• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Нейросеть научили предсказывать кризисы на фондовом рынке России

Нейросеть научили предсказывать кризисы на фондовом рынке России

© iStock

Экономисты из ВШЭ разработали нейросетевую модель, способную за сутки до события с точностью более 83% предупредить о приближении краткосрочного фондового кризиса. Модель работает даже на сложных, несбалансированных данных и учитывает не только экономические показатели, но и настроение инвесторов. Работа сотрудников Центра финансовых исследований и анализа данных ФЭН ВШЭ Тамары Тепловой, Максима Файзулина и Алексея Куркина опубликована в журнале Socio-Economic Planning Sciences.

Как предсказать шторм на фондовом рынке? Знать ответ на этот вопрос хотят финансовые аналитики и инвесторы по всему миру. Работа сотрудников Центра финансовых исследований и анализа данных ФЭН ВШЭ Тамары Тепловой, Максима Файзулина и Алексея Куркина предлагает оригинальный подход к прогнозированию краткосрочных кризисов на отечественном рынке акций. Созданная ими гибридная модель глубокого обучения, сочетающая три архитектуры: Temporal Convolutional Network (TCN), Long Short-Term Memory (LSTM) и Attention (механизм внимания инвесторов), — это первая попытка применить столь сложную структуру к российским биржевым данным.

Авторы проанализировали данные с 2014 по 2024 год, включающие рыночные и макроэкономические показатели (в первую очередь индекс Мосбиржи IMOEX), а также индикаторы настроений инвесторов. Чтобы спрогнозировать вероятность наступления кризиса на ближайшие 1–5 торговых дней, ученым пришлось решить несколько методологических проблем. Во-первых, кризисы на рынке происходят редко (до четверти всех событий), что делает обучающую выборку несбалансированной: есть риск, что модель научится игнорировать редкие сигналы. Во-вторых, поведение инвесторов подчиняется не только объективным экономическим факторам, но и субъективным настроениям, которые трудно формализовать. В ответ на это исследователи разработали составные индексы внутреннего и внешнего инвестиционного настроения, используя метод главных компонент. Эти индексы дополняют традиционные макроэкономические и рыночные переменные, позволяя уловить скрытые эмоциональные сигналы участников торгов на более дальних временных горизонтах прогнозирования.

Тамара Теплова

«Мы представили гибридную модель TCN — LSTM — Attention, сочетающую методы глубинного обучения и механизм внимания. Модель эффективно обрабатывает неравномерные данные и достигает точности 78,70% при прогнозе кризисных событий в день наблюдения и 78,85% на следующий торговый день. Использование месячной повторной тренировки и адаптивных временных окон позволило довести точность до 83,87%. Ключевыми факторами, влияющими на предсказания, оказались биржевые индикаторы (аналог технического анализа), капитализация компаний — эмитентов акций и рыночные курсы валют», — сообщила профессор факультета экономических наук ВШЭ Тамара Теплова.

Разработанная система может стать важным инструментом в арсенале инвесторов, финансовых аналитиков и регуляторов. Она позволяет не просто ретроспективно анализировать кризисные периоды, но заранее и с высокой достоверностью выявлять угрозы на горизонте 1–2 дней. В сочетании с регулярной адаптацией к новым данным такая система может лечь в основу динамической архитектуры мониторинга рисков, адаптированной под специфику российского рынка.

«Работа имеет высокую практическую значимость для национального финансового сектора: она предлагает действенные инструменты для своевременного выявления рыночных потрясений, что особенно актуально для нестабильной макроэкономической среды», — подчеркивает Тамара Теплова.

Исследование выполнено при поддержке Программы фундаментальных исследований НИУ ВШЭ в рамках проекта «Центры превосходства».

Вам также может быть интересно:

Вышка стала соорганизатором Международного диктанта по финансовой безопасности

С 1 по 30 сентября пройдет Международный диктант по финансовой безопасности. Масштабный онлайн-проект разработан с целью повышения осведомленности людей разного возраста о проблемах в сфере экономической стабильности. Тема этого года — «Новые технологии на страже финансовой безопасности: от личной защиты до суверенитета государства». В новом сезоне НИУ ВШЭ вошел в состав организаторов.

Эпоха ИИ: университеты и бигтехи обсудили трансформацию системы образования

В рамках круглого стола, организованного «Яндекс Образованием», эксперты из ведущих университетов и технологических компаний обсудили будущее системы образования и подготовки IT-специалистов в условиях развития технологий искусственного интеллекта. Высшую школу экономики представляла проректор университета Елена Одоевская.

Ученый в цифровую эпоху: как определить свой профессиональный путь в новом мире

Центр научной интеграции НИУ ВШЭ запускает программу «Современный ученый: инструменты развития научной карьеры», ориентированную на развитие профессиональных компетенций молодых исследователей. В течение 6 недель слушатели в синхронном онлайн-формате изучат 5 тематических блоков. Обучение начнется 22 сентября. На программу могут поступить все желающие, имеющие или получающие высшее или среднее специальное образование.

Ученые ВШЭ выяснили, почему люди доверяют науке

Исследователи ИСИЭЗ НИУ ВШЭ проанализировали степень доверия научному знанию в российском обществе и выявили факторы, которые влияют на восприятие. Оказалось, что доверие к науке больше зависит от повседневного опыта, социальных ожиданий и представлений о пользе, а не от объективных знаний. Статья опубликована в журнале «Мир России».

НИУ ВШЭ и Центр им. Дмитрия Рогачева подписали соглашение о научно-практическом сотрудничестве

Высшая школа экономики и Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии имени Дмитрия Рогачева подписали соглашение о научно-практическом сотрудничестве. Подписи под документом поставили ректор НИУ ВШЭ Никита Анисимов и генеральный директор центра Николай Грачев.

Вышка доверит ИИ рутинную работу по созданию программ ДПО

НИУ ВШЭ совместно с EdTech-компанией CDO Global запускает AI-конструкторы для оптимизации разработки курсов дополнительного профессионального образования (ДПО). Новый сервис позволит автоматизировать подготовку учебных материалов и оценочных средств, значительно сократив время и ресурсы, затрачиваемые преподавателями и методистами.

На портале Вышки доступны обновленные «Цифры и факты» и дашборды

Дирекция по аналитике и управлению данными совместно с отделом визуальных коммуникаций разработали новую страницу «Цифры и факты о НИУ ВШЭ» на портале Вышки. Также всем сотрудникам университета доступен дашборд с показателями обновленной программы «Приоритет-2030».

Исследователи изучили, как в малых российских университетах заботятся о студентах

Исследователи из Института образования НИУ ВШЭ провели социологическое исследование в четырех малых неселективных университетах и на основе 135 интервью показали, что в таких вузах забота о студентах имеет двойственную природу. Она объединяет искреннюю помощь с постоянным надзором, напоминая родительскую опеку. Это первое детальное описание того, как формальные и неформальные практики заботы переплетаются в постсоветском образовательном контексте. Исследование опубликовано в British Journal of Sociology of Education.

На Международной летней школе в КНР Вышка поделилась опытом изучения городских стратегий

На фоне усиления глобальной геополитической и технологической конкуренции ведущие китайские вузы Чжэцзянский университет международных исследований и Пекинский университет организовали совместную Международную летнюю школу. Центральной ее темой стало изучение глобальных региональных и городских стратегий развития. Факультет городского и регионального развития НИУ ВШЭ принял участие в работе школы.

ВШЭ и Московский аналитический центр объединят усилия в сфере ИИ

НИУ ВШЭ подписал соглашение о сотрудничестве с ГБУ «Московский аналитический центр». Документ закрепил намерение сторон развивать совместные исследования и внедрять технологии искусственного интеллекта в управление городским хозяйством.