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Strongly Perturbing the Rössler Attractor:
a case for stochastic-like resonance

and its biological relevance
Basios, V.

Université Libre de Bruxelles (ULB)
Interdisciplinary Centre for Nonlinear Phenomena and Complex Systems (CeNoLi) &

Service de Physique des Systémes Complexes et Mècanique Statistique, Brussels, Belgium.
vbasios@ulb.ac.be

The effect of noise in non-linear dynamical systems, although extensively studied,
never ceases to surprise us with its unexpected rich repertoire of counter intuitive re-
sults. The delay of bifurcations, its stabilizing effects and phenomena such as stochastic
resonance add to the enrichment of dynamical behaviour of non-linear systems when per-
turbed by randomness. The case we present here consist of a strong parametric perturba-
tion of the Rössler system in its chaotic regime since this system serves as an archetypal
example of chaotic dynamics after the seminal pioneering work of L. Shilnikov. We re-
port the detection a stochastic resonance-like phenomenon and discuss the challenges of
its mathematical description. We shall also relate this kind of parametric perturbations’
utility for biologically important phenomena like stochastic circuit switching in genes and
neural systems and touch on the subject of decision mechanisms utilizing a stochastic
switch. Finally we will briefly explore its relevance to symbolic dynamics generated by
coarse grained dynamical systems.

On trajectory attractor approximations of the 3D Navier-Stokes
system by various hydrodynamical alpha-models

Chepyzhov V.V.

Institute for Information Transmission Problems, RAS, Russia;
National Research University Higher School of Economics, Russia

chep@iitp.ru

An α-model is a mollification of the 3D Navier–Stokes (NS) system in which the
smoothing is performed by some predefined filtering of the velocity arguments in the
nonlinear term of the original NS system [1, 2]. Examples of such systems are: the La-
grangian averaged NS-α model or viscous Camassa–Holm equations, the Leray-α model,
the simplified Bardina-α model. It was demonstrated analytically and computationally
in many works that these α-models are useful tools in the study of the motion of large
eddy currents. It was also proved that the Cauchy problems for the mentioned above
α-models are well-possed and they possess global attractors [3, 4].

In the present work, we study the limits as α → 0+ for the long-time dynamics of
various α-models of viscose incompressible fluid and their relations with the trajectory
attractor of the exact 3D NS system. An α-models is characterized by its nonlinear term
that approximate and regularize in some sense the standard bilinear term of the classical
3D NS system. We partition the considered α-models into two classes depending on the
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orthogonal properties of their mollifying nonlinear terms. We show that attractors of
α-models from Class I attracts the trajectories stronger than the attractors of α-models
from Class II.

We consider bounded (in the energy norm) families of solutions of a given α-model
for 0 < α ≤ 1. For α = 0, we formally have the classical 3D NS system for which the
uniqueness theorem (on the entire time semi-axis) of the (existing) weak solution of the
Cauchy problem is not proved yet. However, for the 3D NS system, we can construct the
trajectory attractor A0 which describes the dynamics of the system in the corresponding
local weak topology [5, 6].

For both classes of α-models, we prove that the bounded families of trajectories of the
considered α-model converge to the trajectory attractor A0 of the exact 3D NS system
as time t tends to infinity and α → 0+ in the local weak topology.

In particular, we show that the trajectory attractor Aα of a given α-model converges
to the trajectory attractor A0 of the 3D NS system as α → 0+ in the considered local
weak topology.

For all α-models, we have constructed the minimal limits Amin ⊆ A0 of their trajectory
attractors Aα as α → 0 + . We have proved that each set Amin is a compact connected
component of the trajectory attractor A0. Moreover, all sets Amin are strictly invariant
with respect to time translation semigroup.

The work is partially supported by the Russian Foundation of Basic Researches
(projects no. 14-01-00346 and 15-01-03587) and the Russian Science Foundation (project
no. 14-50-00150).

References
[1] S. Chen, C. Foias, D.D. Holm, E. Olson, E.S. Titi, S. Wynne, The Camassa–Holm

equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett.
81 (1998), 5338–5341.

[2] S. Chen, D.D. Holm D.D., L.G. Margolin, R. Zhang, Direct numerical simulations of
the Navier–Stokes-alpha model, Physica D, 133 (1999), 66–83.

[3] C. Foias, D.D. Holm, E.S. Titi, The three dimensional viscous Camassa–Holm equa-
tions and their relation to the Navier–Stokes equations and turbulence theory, J.
Dyn. Diff. Eq., 14:1 (2002), 1–35.

[4] A. Cheskidov A., D.D. Holm, E. Olson, E.S. Titi, On Leray-α model of turbulence,
Royal Society London, Proc., Series A, Mathematical, Physical & Engineering Sci-
ences, 461 (2005), 629–649.

[5] V.V. Chepyzhov, M.I. Vishik, Evolution equations and their trajectory attractors,
J.Math. Pures Appl., 76 (1997), 913–964.

[6] M.I. Vishik, V.V. Chepyzhov, Trajectory attractors of equations of mathematical
physics, Russian Math. Surveys, 66:4 (2011), 637–731.

2



Stability analysis of abstract systems of Timoshenko type
Dell’Oro Filippo

Institute of Mathematics of the Academy of Sciences of the Czech Republic
delloro@math.cas.cz

We consider an abstract system of Timoshenko type

ρ1φ̈+ aA
1
2 (A

1
2φ+ ψ) = 0

ρ2ψ̈ + bAψ + a(A
1
2φ+ ψ) − δAγθ = 0

ρ3θ̇ + cAθ + δAγψ̇ = 0

where the operator A is strictly positive selfadjoint. For any fixed real γ the stability
properties of the related solution semigroup S(t) are discussed. In particular, a general
technique is introduced in order to prove the lack of exponential decay of S(t) when the
spectrum of the leading operator A is not made by eigenvalues only, which is always the
case if its inverse A−1 is not compact.

Asymptotic behavior of dynamical systems arising in fluid mechanics
E. Feireisl (Czech Republic)

We consider a system of equations modelling the evolution of an energetically isolated
fluid system driven by external volume forces of various types. The existence of absence
of attractors for such a system is discussed. We also show stabilization to equilibrium
enforced by highly oscillating external forces with growing amplitude.

Asymptotic properties of invariant measures for stochastically
forced Boussinesq equations

Földes J. (USA)

Parabolic Equation of normal type
connected with 3D Helmholtz system.

Fursikov A.V.

Moscow State University, fursikov@gmail.com

We consider normal parabolic equations (NPE) connected with 3D Helmholtz equations
whose nonlinear term B(v) is orthogonal projection of nonlinear term for Helmholtz
system on the ray generated by vector v. We will describe the structure of dynamical
flow corresponding to this NPE and explain why this NPE can be interesting. Our main
goal is to study nonlocal stabilization problem for NPE introduced above by starting
control supported on arbitrary fixed subset with nonempty interior. The main steps of
solution to this problem will be discussed.
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Approximation of groups, characterizations of sofic groups,
and equations over groups.

Lev Glebsky

IICO-UASLP, Mexico glebsky@cactus.iico.uaslp.mx

Sofic groups was defined in relation with the Gottscholk surjunctivity conjecture.
Hyperlinear groups was introduced in relation with Connes’ embeding conjecture. It is
known that sofic groups are hyperlinear, the other inclusion is an open question.

Some famous conjecture in group theory (Kervaire, Gottscholk, Connes’ embedding
conjectures) are proved to hold for sofic groups. It is also known that some important
classes of groups are sofic, for example, amenable, residually amenable, extensions of
amenable by sofic, etc.

An open question is if all groups are Sofic (Hyperlinear).
Classically, sofic (hyperlinear) groups are defined as metric approximation by sym-

metric groups (unitary groups). It is possible to define metric approximation by different
classes of groups.

By definition, the metric approximation depends on invariant length functions and a
class of groups. The structure of the set of invariant length functions on a group depends
on the algebra of the conjugacy classes of this group. The aim of the present talk is
to define and investigate the notion of approximation based on products of conjugacy
classes without direct use of any length functions. Such approximations will be called
K-approximations. Let Sym, Alt, Nil, Sol, Fin be the classes of finite symmetric, finite
alternating, finite nilpotent, finite solvable and all finite groups, respectively. We show
that the classes of Alt-approximable groups, Sym-approximable groups, and sofic groups
coincide. Fin-approximable groups are called weakly sofic.

Dynamical properties of logistic equation with state-dependent delay
Golubenets V.

Yaroslavl State University, golubenets2010@yandex.ru

Local dynamics of classical Hutchinson’s equation

Ṅ = λN(1 −N(t− 1)), λ > 0

is well known. In this report we consider more general form of this equation, namely:

Ṅ = λN(1 −N(t− T (N))), λ > 0, (1)

where function T (N) plays the role of state-dependent delay, and discuss its local dynam-
ical properties. Namely, we investigate dynamics of equation (1) in a small neighborhood
of its positive equilibrium at λ close to critical value π/2.

We make the next assumptions on T (N): it is analytical near N = 1, positive in
its definition region, bounded by positive constant T1 and T (1) = 1. The expansion of
T (N) in the Taylor formula is

T (N) = 1 − α(N − 1) − β(N − 1)2 + o
(
(N − 1)2

)
,
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where α and β are nonzero parameters. All the considered solutions of the equation (1)
are assumed to be bounded.

Using known local method we construct normal form for equation (1):

rz′ = µz + νz|z|2.

Then we analyze this obtained equation and determine values of parameters α and β
in which supercritical Andronov – Hopf bifurcation occurs in equation (1( near positive
equilibrium at λ close to critical.

Quasi-Feynman formulas for the one-dimensional Schrödinger equation
with a bounded smooth potential via the Remizov theorem

Grishin D. V., Smirnov A. V.

Bauman Moscow State Technical University
grishind@yandex.ru, smirnov.toxa@gmail.com

Quasi-Feynman formula is a representation of a function in a form which includes
multiple integrals of an infinitely increasing multiplicity, see [1]. The first toy-model
for the Remizov theorem (theorem 3.1 in [1]) was suggested by A.S.Plyashechnik. The
model was a one-dimensional Schrödinger equation with a bounded smooth potential.
We prove that the conditions of the Remizov theorem are satisfied and show the arising
quasi-Feynman formulas.

Consider the Cauchy problem in L2(R){
i
a
dψ(t,x)
dt

= −1
2
d2ψ(t,x)
dx2

+ V (x)ψ(x); t ∈ R, x ∈ R
ψ(0, x) = ψ0(x); x ∈ R

Above a is a non-zero number, 0 ̸= a ∈ R, and V a bounded function with bounded
continuous derivative, V ∈ C1

b (R,R).
We show that the solution of this Cauchy problem can be obtained in the form of

the quasi-Feynman formula

ψ(t, x) = lim
n→∞

lim
k→∞

k∑
m=0

m∑
q=0

(−1)m−qimamnm(sign(t))m

q!(m− q)!

(
n

2π|t|

)q/2
×

×
∫
R

. . .

∫
R︸ ︷︷ ︸

q

exp

{
−|t|
n

[
1

2
V (x) +

q∑
p=1

V

(
x+

q∑
j=p

yj

)]
− 1

2t

q∑
j=1

y2j

}
×

×f

(
x+

q∑
j=1

yj

)
q∏
p=1

dyp.

References
[1] I. D. Remizov. Quasi-Feynman formulas — a novel method of obtaining approxi-

mations for a Schrödinger group.// The latest version of arXiv:1409.8345
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Bifurcation research and stabilization
chaotic systems of Lorenz type

Gurina Т. А.

Моscow Aviation Institute (National Research University)
gurina-mai@mail.ru

The models described multiparameter systems of three differential equations of Lorentz
type (model gyrostat and economic model of the average firm):

ẋ = −σx+ δy, ẏ = µx+ νy − βxz, ż = −γz + αxy. (2)

As a bifurcation parameters considered µ, ν, γ and the parameters α, β, δ, σ are fixed.
For special points system built partition Space bifurcation parameters on the field ac-
cording to the type of rough singular point of the linearized system. When crossing
the border field of saddle-focus with positive real part couples complex conjugate roots
going Andronov-Hopf bifurcation the birth of a stable limit cycle, followed by a cascade
period-doubling bifurcations cycle and subharmonic cascade Sharkovskii ending cycle
period of the birth of three. A further change in the parameters appear in the system
cycles homoclinic bifurcation cascade leading to the formation strange attractor. Using
systems and transformations evidence of calculations show the existence of homoclinic
the trajectory of a saddle-focus, the destruction of which is the main homoclinic bifur-
cation cascade, and identify areas parameters in which it exists. Bifurcation diagrams,
graphs Lyapunov exponents,saddle of graphics, fractal dimension of the strange attrac-
tor. Objectives stabilization of unstable singular points of these systems solved extended
by the control system. The parameters control systems to ensure the stabilization of the
singular point in the range of the main bifurcation parameter, covers an area of chaos.
References
1. Shilnikov L., Shilnikov A., Turaev D., Chua L. Methods of qualitative theory in non-
linear dynamics: P. 2. River Edge, NJ: World Scientific, 1998, P. 393-957.
2. Magnitskii N.A., Sidorov S.V. New methods of chaotic dynamics. M.: URSS, 2004,
320 p.

Attractors for the 2D damped Navier-Stokes system
on large periodic domains and in R2

Ilyin A.A.

Keldysh Institute of Applied Mathematics
ilyin@keldysh.ru

We consider the damped and driven Navier–Stokes system

∂tu+ (u,∇)u+ ∇p+ αu = ν∆u+ g, div u = 0. (3)

with additional dissipative term αu, α > 0, modelling the Ekman friction.
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In the case of a periodic domain x ∈ [0, 2πL]2 it was shown in [1] that the system
possesses a global attractor A (in L2) with finite fractal dimension

dimf A ≤ min

(√
6
∥curl g∥L

να
,

3

8

∥curl g∥2

να3

)
. (4)

We observe that both estimates are of the order 1/ν as ν → 0+ and this rate of growth
of the dimension is sharp [1].

For the system (3) on the elongated periodic domain x ∈ [0, L] × [0, L/γ], γ ≪ 1 we
have the estimates (provided that α ≥ (5/8)ν/L2)

dimf A ≤ min

(
12

∥curl g∥L
√
γ να

, 6

(
1

π
+

√
2

π

)
∥curl g∥2

να3

)
, (5)

in which the rate of growth 1/ν is also sharp as ν → 0+ and γ → 0+ [2].
While the first estimates in (4), (5) blow up as L→ ∞, the second estimates survive.

Therefore, one might expect that these estimates hold for L = ∞, that is, for x ∈ R2,
and a motivation of the present work [3] is to show that this is indeed the case.

Theorem. Let x ∈ R2 and let the right-hand side g belong to the scale of homoge-
neous Sobolev spaces Ḣs, s ∈ [−1, 1]. Then

dimf A ≤ 1 − s2

64
√

3

(
1 + |s|
1 − |s|

)|s|
1

α2+s ν2−s
∥g∥2

Ḣs , s ∈ [−1, 1].

In particular, for s = 1 we obtain

dimf A ≤ 1

16
√

3

∥curl g∥2

ν α3
.

The last estimate up to a constant coincides with the second estimates in (4), (5)
proving thereby our expectation.

Acknowledgements. This work was done with the financial support from the Rus-
sian Science Foundation (grant no. 14-21-00025).
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Normalization of equations with two delays of different order
Kashchenko I.

Yaroslavl State University
ikashchenko@yandex.ru

Consider the equation with two delays

ẋ+ x = ax(t− T1) + bx(t− T2) + f(x.x(t− T1), x(t− T2)), T1 > T2 > 0,

where f(x, y, z) is nonlinear function (f(0, 0, 0) = 0). Main assumption is that both T1
and T2 are asymptotically large and T1T−1

2 is large too. Let T1 = ε−1, where 0 < ε≪ 1.
Then T2 = ε−1(k0 +εαk1) (α > 0). The problem to research is to determine the behavior
of solutions in some small (but independed of ε) neighbourhood of zero equilibrium state.
The method of investigations is so-called method of quasinormal forms.

We proof that if |a| + |b| < 1 then z = 0 is stable and if |a| + |b| > 1 then zero is
unstable. So |a| + |b| = 1 is critical case.

In critical case we construct special evolutionary equations (quasinormal forms).
Their non-local dynamics determines the local behavior of solutions of the original equa-
tions. The particular kind of quasinormal forms is highly depends on parameter α.
There are three different situations: (1) α < 1, (2) α = 1 and (3) α > 1. Also, there are
important situation when b is small, so we have small multiplier at the term with largest
delay.

This work was supported by project no. 984 within the base part of state assign-
ment on research in YarSU and by a grant from President of Russian Federation (MK-
5572.2015.1)

Periodic and chaotic dynamics of weakly nonlinear shock waves
1Kasimov, A. R. and 1,2Faria, L. M. and 2Rosales, R. R.

1King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
2Massachusetts Institute of Technology, Cambridge, MA, USA

aslan.kasimov@kaust.edu.sa

Weakly nonlinear multi-dimensional shock waves are characterized by small ampli-
tude and weak curvature of the shock front. When such waves propagate in a chemically
reacting gas, the energy released in chemical reactions can make them self-sustained (they
are called detonations). We derive an asymptotic model for the dynamics of these waves
from the compressible reactive Navier-Stokes equations. The resultant model in 2D and
in dimensionless form is given by (Faria, L. M. and Kasimov, A. R. and Rosales, R. R.,
An asymptotic theory of weakly non-linear detonations, http://arxiv.org/abs/1407.8466,
2014)

ut + uux + vy = −1

2
Tx + µuxx

vx = uy

λx = −k(1 − λ)eθT − dλxx

κTx + T = u+ qλ+ qdλx.
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where u, v is the velocity field, T is the temperature, and λ ∈ [0, 1] is the variable
measuring the fraction of the chemical energy, q, released in the reactions. The pa-
rameters µ, κ, and d are coefficients of viscosity, heat conduction, and diffusion, re-
spectively. Parameters k and θ characterize the heat release rate. This system is a
generalization of the models of small disturbance unsteady transonic flow, weakly non-
linear acoustics (Zabolotskaya-Khokhlov (ZK) equation), and water waves (dispersion-
less Kadomtsev-Petviashvili (KP) equation). Without chemical and dissipative terms
(µ = κ = d = q = 0), our model reduces to (uτ + uux)x + uyy = 0, which is the same
as ZK or dispersionless KP equation. The model predicts regular and irregular multi-
dimensional patterns, and in 1D exhibits transition from steady and stable traveling
waves to oscillatory traveling waves through a Hopf bifurcation as θ is increased. A
cascade of period-doubling bifurcations leading to chaos is also observed.

On linear stability and dispersion for
crystals in the Schrödinger-Poisson model

A.I. Komech, E.A. Kopylova

Faculty of Mathematics of Vienna University and
Institute for Information Transmission Problems RAS

akomech@iitp.ru

We consider the Schrödinger-Poisson-Newton equations as a model of crystals. Our
main results are the well posedness and dispersion decay for the linearized dynamics at
the ground state. This linearization is a Hamilton system with nonselfadjoint (and even
nonsymmetric) generator. We diagonalize this Hamilton generator using our theory
of spectral resolution of the Hamilton operators with positive definite energy [?, ?],
which is a special version of the M. Krein-H. Langer theory of selfadjoint operators in
Hilbert spaces with indefinite metric. Using this spectral resolution, we establish the
well posedness and the dispersion decay of the linearized dynamics with positive energy.

Our key technical result is the energy positivity for the linearized dynamics with
small elementary charge e > 0 under a novel Wiener-type condition on the ions positions
and their charge densitities. We give examples of crystals satisfying this condition.

The main difficulty in the proof of the positivity is due to the fact that for e = 0
the minimal spectral point E0 = 0 is an eigenvalue of infinite multiplicity for the energy
operator. To prove the positivity we study the asymptotics of the ground state as e→ 0
and show that the zero eigenvalue E0 = 0 bifurcates into Ee ∼ e2.
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On asymptotic stability of kinks for
relativistic Ginzburg-Landau equation

Kopylova E. A.

Faculty of Mathematics Vienna University and
Institute for Information Transmission Problems RAS

elena.kopylova@univie.ac.at

We consider nonlinear relativistic wave equation in one space dimension

ψ̈(x, t) = ψ′′(x, t) + F (ψ(x, t)), x ∈ R, F (ψ) = −U ′(ψ), (6)

where U(ψ) is a potential of Ginzburg-Landau type

U(ψ) ∼ (ψ2 − 1)2/4.

The kink is a nonconstant finite energy solution of stationary equation

s(x) ∼ tanhx/
√

2.

The corresponding moving kinks or solitary waves

sq,v(t) = s(x− vt− q), q, v ∈ R, |v| < 1, γ = 1/
√

1 − v2

are the solutions to equation (1). Our main results are the following asymptotics

(ψ(x, t), ψ̇(x, t)) ∼ (sq±,v±(x− v±t− q±), ṡq±,v±(x− v±t− q±)) +W0(t)Φ±, t→ ±∞

for solutions to (1) with initial states close to a solitary wave. HereW0(t) is the dynamical
group of the free Klein-Gordon equation, Φ± are the corresponding asymptotic states,
and the remainder converges to zero in the “global energy norm” of the Sobolev space
H1(R) ⊕ L2(R).

The proof techniques depend on the spectral properties of the linearized equation
and may be regarded as a modern extension of the Lyapunov stability theory. Crucial
role in the proof play our results on dispersion decay for the corresponding linearized
Klein-Gordon equations. We also construct an examples of nonlinear equations with
prescribed spectral properties of the linearized dynamics.
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Inertial manifolds for the 3D Cahn-Hilliard equation
with periodic boundary conditions

Kostianko A., Zelik S.

University of Surrey
a.kostianko@surrey.ac.uk, s.zelik@surrey.ac.uk

My talk will be devoted to the existence of an inertial manifold (IM) for the 3D
Cahn-Hilliard equation with periodic boundary conditions. In general, the existence of
an IMs requires strong spectral gap condition which is violated in our case. Nevertheless,
it appears that corresponding IM can be constructed using the proper extension of the
so-called spatial averaging principle introduced by G. Sell and J. Mallet-Paret. This is
the joint work with Prof. Sergey Zelik.

From the Fermi-Pasta-Ulam model to the high-order nonlinear
evolution equations

N. Kudryashov

National Research Nuclear University MEPhI, Moscow
nakudryashov@mephi.ru

Three coupled rotators: from Anosov dynamics to hyperbolic attractor
S. P.Kuznetsov

Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
Saratov State University

spkuz@yandex.ru

The work presents an example of a system with chaotic dynamics built of three rota-
tors by modifying a conservative system with hyperbolic Anosov dynamics [1]. Results
of a computational study of chaotic dynamics are considered (portraits of attractors,
time dependences of the variables, Lyapunov exponents, and spectra) and good corre-
spondence is observed between the dynamics on the attractor of the proposed system
with the reduced model, characterized by the Anosov dynamics at appropriately defined
energy [2]. The work is supported in part by RFBR grant No 15-02-02893 and by RSF
grant No 15-12-20035.

1. Hunt T.J. and MacKay R.S., Anosov parameter values for the triple linkage and a
physical system with a uniformly chaotic attractor // Nonlinearity. 2003. Vol. 16.
P. 1499-1510.

2. Kuznetsov S.P., Chaos in the system of three coupled rotators: from Anosov dy-
namics to hyperbolic attractor // Izvestiya of Saratov University. New series.
Series Physics. 2015. Vol. 15. No. 2. P. 5-17. (In Russian.)
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The axially symmetric dynamics for dissipative parabolic
equations on the sphere

F. Lappicy (Brasil)

Dissipative scalar parabolic equations on an interval have well known dynamics, and
in particular the attractors can be constructed explicitly. Such construction use the
zero-dropping property and a permutation related to the equilibria equation.

We are interested in the dynamics of dissipative parabolic equations on the sphere.
In particular, axially symmetric solutions can be reformulated as an equation on an
interval. However, there is a coefficient that is singular at both boundary points. We
adapt a method used by Chen and Poláčik to prove that the zero-dropping property still
holds. Moreover, we show the difficulties of constructing a permutation as it was done
by Fusco and Rocha. Lastly, it is shown how both this ingredients can be combined
to construct the attractor explicitly, as it was done by Brunovský, Fiedler, Rocha and
others.

Some recent results on tempered pullback attractors for
non-autonomous variants of Navier-Stokes equations

Maŕın-Rubio, P.

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla (SPAIN)
pmr@us.es

During the last years, there have been several different approaches to non-autonomous
dynamical systems for time-dependent problems and their long-time behaviour. In this
talk I will focus on pullback attractors associated to some variants of Navier-Stokes
(NS) equations with time-dependent terms. Issues to be analyzed in the exposition will
include non-local (time) effects, tempered universes and tempered behaviour, regularity,
and even well-posedness of some problems related to NS with and without delay, and
others like Navier-Stokes-Voigt.

This talk is based partially in some works done in collaboration with J. Garćıa-Luengo
(Universidad de Sevilla, Spain), G. Planas (IMECC, Universidade Estadual de Camp-
inas, Brazil), J. Real (Universidad de Sevilla, Spain), and J. C. Robinson (University of
Warwick, UK).

[1] J. Garćıa-Luengo, P. Maŕın-Rubio, G. Planas, Attractors for a double time-delayed
2D-Navier-Stokes model, Discrete Contin. Dyn. Syst. 34 (2014), 4085–4105.

[2] J. Garćıa-Luengo, P. Maŕın-Rubio, J. Real, H2-boundedness of the pullback at-
tractors for non-autonomous 2D Navier-Stokes equations in bounded domains, Nonlinear
Anal. 74 (2011), 4882–4887.

[3] J. Garćıa-Luengo, P. Maŕın-Rubio, J. Real, Pullback attractors in V for non-
autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential
Equations 252 (2012), 4333–4356.

[4] J. Garćıa-Luengo, P. Maŕın-Rubio, J. Real, Pullback attractors for three-dimensional
non-autonomous Navier-Stokes-Voigt equations, Nonlinearity 25 (2012), 905–930.
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[5] J. Garćıa-Luengo, P. Maŕın-Rubio, J. Real, Pullback attractors for 2D Navier-
Stokes equations with delays and their regularity, Adv. Nonlinear Stud. 13 (2013),
331–357.

[6] J. Garćıa-Luengo, P. Maŕın-Rubio, J. Real, J. C. Robinson, Pullback attractors for
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Contin. Dyn. Syst. 34 (2014), 203–227.

[7] J. Garćıa-Luengo, P. Maŕın-Rubio, J. Real, Some new regularity results of pullback
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(2015), 1603–1621.
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Some generalizations of the Cahn-Hilliard equation

Alain Miranville (France)

Our aim in this talk is to discuss the qualitative behavior (existence of finite-dimensional
attractors and blow up in finite time) of variants of the Cahn-Hilliard equation. Such
equations arise in the context of image inpainting and biology.

Multistability in quasiperiodically driven Ikeda map
Pozdnyakov M.V.1, Savin A.V2, Savin D.V.2

1Yuri Gagarin State Technical University of Saratov, Saratov, Russia
2Chernyshevsky Saratov State University, Saratov, Russia

mpozdnyakov@yandex.ru

It is well known that dynamical systems with weak dissipation can demonstrate a
great number of attractors [1]. In this work mechanisms of phase space structure changes
for the system with weak disipation while the quasiperiodical influence to the system is
induced have been investigated using the Ikeda map [2].

The investigated map is given by

En+1 = A(1 + ε sin(Ω · φ · n)) +BEn exp(i|En|2 + iφ),

where A is control parameter, B is parameter of dissipation, ε is amplitude of external
influence, Ω is frequency of influence, φ is phase.

In the work the structure of coexisting attractors and their evolution while ε is
changed in the case of weak dissipation are investigated. It is shown that the number
of coexisting attractors decreases in comparison with the case of absence of external
influence. It occurs due to the finite size of torus attractor in contrast to periodical
attractor. The attractor number dependence on the ε is studied for different values of A.
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The evolution of attractor basins boundaries while quasiperiodical influence is appended
has been studied.

The work was supported by Russian Foundation for Basic Researches (grant 14-02-
31067).
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Invariant measures and attractors of
non-autonomous Frenkel-Kontovora models

Rabar B.

Faculty of natural sciences - mathematics department, Zagreb
braslav.rabar@yahoo.com

Dissipatively driven Frenkel-Kontorova (FK) model is a system of infinitely many
coupled particles in a periodic potential, with over-damped (or gradient) dynamics, im-
portant in e.g. physical applications. It is related to scalar reaction-diffusion equations,
and can be understood as its discrete-space analogue. We develop ergodic theory for
non-autonomous FK models, and in particular show that the union of supports of all
space-time invariant measures is at most two-dimensional set, mainly consisting of syn-
chronized orbits. This explains experimentally and numerically observed behavior. We
then focus on the ratchet equations (i.e. oscillating site-potential, no external force), and
give rigorous sufficient conditions for existence of transport, again explaining results of
experiments.

Diffusion in Hilbert space equation solved by Feynman formula

Ivan D. Remizov
Bauman Moscow State Technical University

Lobachevcky State University of Nizhny Novgorod
(ivan.remizov@gmail.com)

In this talk I present the results of [1], which are the continuation of [2] and are also
available in [3].

References:
[1] I.D.Remizov. Solution to a parabolic differential equation in Hilbert space via

Feynman formula - I// Modeling and Analysis of Information Systems (MAIS), ISSN:
2313-5417 (online), 1818-1015 (print), No 3 (2015), to appear.

[2] I.D. Remizov, Solution of a Cauchy problem for a diffusion equation in a Hilbert
space by a Feynman formula// Russian Journal of Mathematical Physics, 19:3 (2012),
360-372.

[3] The latest version of the preprint arXiv:1402.1313 [math.FA].
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On a fractional Cahn-Hilliard equation
Schimperna G.

Department of Mathematics, University of Pavia, giusch04@unipv.it

In this talk we will present some results related to existence, regularity, and long-
time behavior of solutions to a fractional version of the Cahn-Hilliard equation settled
in a smooth bounded domain Ω ⊂ R3. More precisely, we will consider the case where
diffusion is ruled by the so-called “restricted Dirichlet fractional Laplacian”, meaning that
homogeneous Dirichlet conditions of “solid” type are assumed on the whole of R3 \Ω. In
particular, we will show that, under suitable conditions, the ω-limit set of any solution
trajectory consists of a single point. The proof of this fact relies on a new “fractional”
version of the Simon- Lojasiewicz inequality. The results presented in this talk have been
obtained in collaboration with Goro Akagi (University of Kobe) and Antonio Segatti
(University of Pavia).

Controllability implies ergodicity
Shirikyan A. R.

Department of Mathematics, University of Cergy-Pontoise

In this talk, we discuss the interconnection between controllability properties of a dy-
namical system and large-time asymptotics of trajectories for the associated stochastic
system. We begin with a result on the finite-dimensional case which applies to differential
equations on a smooth Riemannian manifold. We show how the approximate control-
lability to a given point and solid controllability imply the uniqueness of a stationary
measure and exponential mixing in the total variation distance. We next turn to prob-
lems in infinite dimension and formulate a sufficient condition (in terms of controllability
properties) for the exponential mixing in the Kantorovich–Wasserstein distance. This
result applies, for instance, to the 2D Navier–Stokes system driven by a random force
acting on the boundary. Finally, we formulate some open problems on controllability
properties of the Navier–Stokes system, which would have interesting applications in the
ergodic theory of the associated random flow.

Intrinsic Shape of Non-Saddle Sets
Shoptrajanov. M, Misajleski. Z

Faculty of Natural Sciences and Mathematics, Macedonia
martin@pmf.ukim.mk

Faculty of Civil Engineering, Macedonia
misajleski@gf.ukim.edu.mk

Asymptotically stable attractors are only a particular case of a large family of in-
variant compacta whose global topological structure is regular. We devote this talk to
introducing this class of compacta, the non-saddle sets. Attractors and repellers are
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examples of non-saddle sets. The main aim of this presentation is to generalize the
well known theorem for shape of global attractors to non-saddle sets using the intrinsic
approach to shape.

Stochastic bifurcations in the Hindmarsh-Rose model
Slepukhina E. S., Ryashko L. B.

Ural Federal University
eudokiya@yandex.ru

We study the effects of random disturbances on the Hindmarsh-Rose model [1] of
neuron activity:

ẋ = y − x3 + 3x2 + I − z + εẇ,
ẏ = 1 − 5x2 − y
ż = r(s(x− x0) − z),

(7)

where x is a membrane potential, variables y, z describe ionic currents, I is an external
current; 0 < r ≪ 1 is a time scale parameter; s, x0 are other parameters; w is a standard
Wiener process with E(w(t) − w(s)) = 0, E(w(t) − w(s))2 = |t − s| and ε is a noise
intensity.

We fix r = 0.002, s = 4, x0 = −1.6 and examine the dynamics of the system under
variation of the parameter I.

Due to the strong nonlinearity, even the original deterministic (ε = 0) system demon-
strates very diverse complex dynamic regimes. Random perturbations considerably af-
fect the properties of neuronal systems. Even small stochastic fluctuations can lead to a
significant qualitative changes in the nonlinear dynamics of such systems.

We consider a parametrical zone, where the deterministic system demonstrates both
mono- and bistable dynamic regimes. In the parametric region, where the only attractor
of the deterministic system is stable equilibrium, the phenomenon of stochastic genera-
tion of high-amplitude oscillations is observed. In the parametric zone of the coexisting
stable equilibrium and limit cycle, the system exhibits noise-induced transitions between
the attractors.

These stochastic phenomena are confirmed by the changing of the probability den-
sity distribution of random trajectories. So, under the random disturbances, the system
demonstrates P -bifurcations related to the qualitative change of the distribution of ran-
dom states.

An exhaustive probabilistic description of the stochastic attractors is given by Kolmo-
gorov-Fokker-Planck equation. However, the direct usage of it is very difficult even for the
simplest cases. Various approximations and asymptotics can be used. For the analysis
of the stochastic phenomena in the Hindmarsh-Rose model, we suggest an approach
combining stochastic sensitivity function technique and confidence domains method [2].
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Dynamics of extended gradient systems
Slijepčević, S.

University of Zagreb
slijepce@math.hr

Extended gradient systems are dynamical systems on unbounded domains, which
when suitably restricted to a finite domain are gradient-like. We present general results
on the structure of ω-limit sets, invariant measures, and stability of equilibria and invari-
ant manifolds. We then apply the results to a series of examples, illustrating similarities
and differences with gradient-like systems.

The general theory yields some new results in the following examples on unbounded
domains: dynamics of various reaction-diffusion equations (with energy, entropy, and
Zelenyak/Matano/Fiedler/Rocha-like Lyapunov functions); dynamics of unforced Navier-
Stokes equation in 2D; construction of orbits and measures of Lagrangian systems and
related formally gradient dynamics of the action functional; and finally asymptotics of
some Markov chains on infinite lattices and related phase transitions. For such systems
we also often obtain new bounds on relaxation times on bounded domains, independent
of the domain size.

A larger part of the work is a joint work with Thierry Gallay.

Chaos, hyperchaos and quasiperiodicity
in the system of coupled Toda oscillators

Stankevich N.V., Astakhov V.V.

Yuri Gagarin State Technical University of Saratov
stankevichnv@mail.ru

Coupled oscillator systems play important role in the study of chemical, biological
and physical processes [1]. Synchronization is a fundamental nonlinear phenomenon
occurring via interaction of self-sustained oscillators. However, one can consider the
dynamics of interacting dissipative oscillators with external driving force, which have
stable point and have not stable limit cycle in phase space without driving. In the series
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papers [2-5] was revealed, that in ensembles of coupled dissipative oscillators can be
observed such phenomena as synchronization, quasiperiodic oscillations and other.

In the present paper we consider such problem on the example of Toda oscillator.
We consider coupled two and three oscillators excited by antiphase periodic harmonic
signal. We discuss the features of occurrence quasiperiodic oscillations in such system
and attempt to realize three-frequencies quasiperiodic oscillations. In the such systems
was obtained chaotic oscillations with different amount of Lyapunov exponents (one, two
and three). We consider different scenarios of transitions to different chaotic regimes.
In order to get enough complete picture of dynamics regimes of such systems, were
considered systems with different topology of coupling: chain and ring. For this systems
chart of Lyapunov exponents on the different parameter plane were constructed.

This research was supported by the grant of RFBR No. 14-02-31064.
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УПРАВЛЕНИЕ АТТРАКТОРА ПЛЫКИНА МЕТОДОМ ПИРАГАСА

С. Т. Белякин, С. П. Кузнецов1

Московский государственный университет им. М.В.Ломоносова,
физический факультет, каф. общей физики, Россия, 119991, г.Москва, Ленинские

Горы, тел. (495) 939-51-56, e-mail: bst@newmail.ru
1Саратовский филиал Института радиотехники и электроники,

Россия, 410019, г. Саратов, ул. Зеленая 38, тел. (452) 278-68-5, e-mail:
spkuz@yandex.ru

Как известно, хаотические системы чрезвычайно чувствительны к внешним воз-
действиям. Эта особенность послужила предпосылкой для создания новых методов
управления нелинейными системами и подавления в них хаоса. В данной работе
изучается возможность стабилизации хаотических колебаний в системах с гипер-
болическим типом аттрактора посредством обратной связи и синусоидального воз-
мущения.

Множество Λ называется гиперболическим аттрактором динамической системы,
если Λ — замкнутое топологически транзитивное гиперболическое множество и
существует такая окрестность U ⊃ Λ, что Λ = ∪t≥0f

nU . К хорошо известным
относятся гиперболический аттрактор Плыкина. Гиперболический аттрактор Плы-
кина располагается на двухмерной области T = S2, где S2 — единичная окружность.
Тогда f : T 7→ T, f(x, y, z) = (cosφ sinϕ, sinφ sinϕ, cosϕ), где значение k > 2, и
представляет собой подмножество T ⊂ R3.
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В настоящее время,к гиперболическим аттракторам типа Плыкина [1] проявлен
большой интерес, при моделировании сердечной аритмии и атмосферных процессов.
Аттрактор Плыкина представлен следующей системой уравнений:

Ẋ = −2ϵY 2Ω1(cos(ω2 cosω1t) −X sin(ω2 cosω1t))+

kY Ω2(cos(ω2 sinω1t) −X sin(ω2 sinω1t)) sinω1t,

Ẏ = 2Y Ω1(X cos(ω2 cosω1t) + 2−1(1 −X2 + Y 2) sin(ω2 cosω1t))−
kΩ2(X cos(ω2 sinω1t) + 2−1(1 −X2 + Y 2) sin(ω2 sinω1t)) sinω1t+D(K, τ),

Ω1 = (2X cos(ω2 cosω1t) + (1 −X2 − Y 2) sin(ω2 cosω1t))(1 +X2 + Y 2)−2,

Ω2 = (−2X sin(ω2 sinω1t) + (1 −X2 − Y 2) cos(ω2 sinω1t))(1 +X2 + Y 2)−1 + 2−1/2.

В настоящей работе показано, что посредством обратной связи Y и временной
задерки τ вида D(K, τ) 7→ K(Y (t− τ) − Y (t)) можно выводить данную систему на
регулярный, хаотический и циклический режим.

Данный метод Пирагаса может быть использован в управлении и для других
типов хаотических динамиких моделий аттракторов [2].

Литература.
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Анализ стохастической динамики в 2D-логистическом отображении
Екатеринчук Е.Д., Ряшко Л.Б.

Уральский федеральный университет
имени первого Президента России Б.Н.Ельцина

Ek.Ekaterinchuk@urfu.ru, Lev.Ryashko@urfu.ru

Данная работа посвящена исследованию двумерного логистического отображения
[1] в присутствии внешних случайных возмущений

xt+1 = (1 − λ)xt + 4λyt(1 − yt) + εξt
yt+1 = (1 − λ)yt + 4λxt(1 − xt) + εηt, (8)

где ξt, ηt – независимые гауссовские случайные величины с параметрами Eξt =
0, Eηt = 0, Eξ2t = 1,Eη2t = 1, а величина ε характеризует интенсивность
возмущений.

В детерминированной модели существует четыре равновесия, два из которых
для 0 < λ < 0.4 являются устойчивыми, два других - всегда неустойчивые (седла).
При λ = 0.4 происходит бифуркация Неймарка-Сакера и рождаются две сосущест-
вующие замкнутые инвариантные кривые. Для исследования динамики изменения
фазовых портретов детерминированной модели в зависимости от параметра построена
бифуркационная диаграмма. На бифуркацинной диаграмме можно отметить области
с регулярной динамикой, включающей разнообразные аттракторы и зоны, содержащие
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хаотические режимы. В данной работе исследовались зоны равновесий, замкнутых
инвариантных кривых и дискретных 7-циклов. Изменение степени устойчивости
аттракторов иллюстрируют показатели Ляпунова. В зоне существования замкнутой
инвариантной кривой исследованы число вращения и секторная плотность.

Под влиянием шума стохастическая траектория покидает детерминированный
аттрактор и образует вокруг него облако случайных состояний. Анализ распределения
случайных cостояний опирается на теорию функции стохастической чувствительности
[2]. Детально исследована стохастическая чувствительность аттракторов модели и
конфигурация доверительных областей. Исследованы коэффициенты чувствительности
аттракторов в зависимости от параметра. Параметрически исследованы индуциро-
ванные шумом переходы от порядка к хаосу.

[1] Gardini L., Abraham R., Record R.J., Fournier-Prunaret D. A double logistic
map. // International Journal of Bifurcation and Chaos. 1994, Vol. 4, No. 1, 145-176.

[2] Башкирцева И.А., Ряшко Л.Б., Цветков И.Н. Стохастическая чувствительность
равновесий и циклов дискретных нелинейных динамических систем. //Электронный
журнал "Дифференциальные уравнения и процессы управления". 2009, No. 4.

SEMILINEAR PARABOLIC EQUATIONS
WITHOUT INERTIAL MANIFOLD

A.V. Romanov

National Research University Higher School of Economics
e-mail: av.romanov@hse.ru

Инерциальное многообразие (ИМ) полулинейного параболического уравнения
(ППУ) это гладкая конечномерная инвариантная поверхность в фазовом пространстве,
содержащая глобальный аттрактор и экспоненциально притягивающая все траектории
при большом времени. Сужение уравнения на ИМ представляет собой ОДУ, опи-
сывающее финальную динамику системы. Установить существование ИМ удаётся
для узкого класса ППУ, тогда как известные примеры его отсутствия выглядят
искусственно и не связаны с задачами математической физики.

Абстрактное ППУ в вещественном сепарабельном бесконечномерном гильбертовом
пространстве (X, ∥ · ∥) имеет вид

∂tu = −Au+ F (u) (1)

с линейным положительно-определённым оператором A, компактнымA−1, и гладкой
нелинейной функцией F : H → X, где H = D(Aα), 0 ≤ α < 1, ∥u∥H = ∥Aαu∥.
Считаем, что (1) порождает гладкий диссипативный полупоток в H. Примеры
отсутствия ИМ у ППУ строятся [1–3] на следующей основе. Для стационарных
точек u ∈ E ⊂ H спектр σ(T (u)) оператора T (u) = F ′(u) − A в X состоит из
конечнократных собственных значений λ и число (с кратностью) l(u) положительных
λ в σ(T (u)) конечно. Пусть E− = {u ∈ E : σ(T (u)) ∩ (−∞, 0] = ϕ}.

ЛЕММА. Если аттрактор уравнения (1) с нелинейностью F ∈ C1(H,X) содер-
жится в инвариантном конечномерном C1-многообразии M ⊂ H, то для любых
u0, u1 ∈ E− число l(u0) − l(u1) чётно.
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Рассмотрим интегро-дифференциальное уравнение

ut = ((I +B)ux)x + f(x, u, ux), (2)

на единичной окружности Γ с X = L2(Γ). Здесь I = id, x ∈ Γ,

(Bh)(x) =
1

π

π∫
−π

ln

∣∣∣∣ sin x+ y

2

∣∣∣∣ h(y) dy

для h ∈ X, определённая на Γ × R2 функция f(x, s, p) – бесконечно гладкая, но не
аналитическая. Оператор I+B играет роль нелокального коэффициента диффузии.
Положим Au = u− uxx.

ТЕОРЕМА ([1]). При подходящем выборе функции f уравнение (2) порождает
диссипативный C1-полупоток в H = D(Aα), α ∈ (3/4, 1), причём его аттрактор не
содержится ни в каком инвариантном конечномерном C1-многообразии M ⊂ H.

Фактически, строится функция f такая, что уравнение (2) имеет стационарные
решения u0, u1 ∈ E− с l(u0) = 0 и l(u1) = 1.

Для уравнений реакции-диффузии известны [2,4] примеры отсутствия ИМ с ус-
ловиями гиперболичности. Пусть для u ∈ E прямая Reλ = γ лежит в ϱ(T (u)) и
H(u, γ) – инвариантное подпространство оператора T (u), отвечающее части σ(T (u))
с Reλ > γ. Инерциальное многообразие размерности n нормально гиперболично (на
E), если dimH(u, γ) = n ∀u ∈ E и γ = γ(u) < 0. Пользуясь результатами [2], можно
построить диссипативную систему УРД

∂tu1 = ∆u1 + f1(u1, u2), ∂tu2 = ∆u2 + f2(u1, u2)

в кубе I3 c условием Неймана на границе и полиномиальной нелинейностью (f1, f2),
не допускающую нормально гиперболического ИМ в C(I3;R2). При этом, по сравнению
с аналогичного типа классическим контрпримером [4] размерность задачи понижается
с четырёх до трёх и нелинейная часть не зависит от x ∈ I3.
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About Boltzmann's entropy, Sanov's entropy and their relations

Baymurzina D. R., Gasnikov A. V.

Moscow Institute of Physics and Technology, Russia

dilyara.rimovna@gmail.com, avgasnikov@gmail.com

Assume that some macrosystem can stay at di�erent states characterized by the

vector ~n with nonegative integer components (�lling numbers). Let us assume that in

this system the following reactions may occur:

~n→ ~n− ~α + ~β, (~α, ~β) ∈ J

Following Leontovich (1934), let us introduce intensity of the reaction:

λ(~α,~β)(~n) = λ(~α,~β)(~n→ ~n− ~α + ~β) = N
1−

∑
i

αi

K~α
~β
(~n/N)

∏
i:αi>0

ni · . . . · (ni − αi + 1),

where K~α
~β
(~n/N) ≥ 0 is a constant of reaction. Note that in applications it is always

assumed that

∑
i
ni(t) ≡ N (N is often called the scalling parameter).

Thus λ(~α,~β)(~n) is a probability of the reaction ~n → ~n − ~α + ~β to take place in the

unit of time. On the macrolevel this corresponds to the law of mass action (Guldberg-

Vaage (1864)).

In this work we assume that number of states m = dim ~n, number |J | and constants

K~α
~β
(~n/N) of reactions may depend on N (in contrast to [1]). Even so we additionally

assume that m� N that is necessary to support application of the Stirling formula upon

obtaining variational principle (maximum of entropy). Let us proceed to the theorem

which bridges Boltzmann's entropy (Lyapunov's function of scaled kinetic dynamic) and

Sanov's entropy (Sanov's type function in a high probability deviations inequality).

Theorem 1 Let there exists such a function H(~c) that invariant (stationary) measure

of described above Markov dynamic ful�lls the following representation (in C2):

µ(~n) = exp(−N · (H(~n/N) + o(1))), N →∞.
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Then H(~c) is Lyapunov's function for the following ODE system of Guldberg-Vaage:

dci
dt

=
∑

(~α,~β)∈J

(βi − αi)K~α
~β
(~c)~c~α, ~c~α =

∏
j

c
αj

j . (GV )
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Feynman and Quasi-Feynman formulae

for higher order Schr�odinger equation

Maksim Buzinov

Lomonosov Moscow State University

maxim.cad@gmail.com

One parameter semigroup approximations [1] related to the higher order Schr�odinger

equation ∂
∂t
ψ(t, x) = −a(−4ψ)N(t, x) with complex coe�cient a are considered. For

N = 2 such approximations were obtained in [2]. Similar results for N > 2 are presented

in this talk.

Feynman formulae (i.e. considered semigroup is represented by limits of iterated

integrals of elementary functions when multiplicity of integrals tends to in�nity) obtained

for N > 2 are shown in the �rst part of the talk. Feynman formulae are deduced for

real positive coe�cient a (heat-type equation). Di�erent types of Feynman formulas

are presented in this work: Lagrangin and Hamiltonian. Lagrangian Feynman formulae

are suitable for computer modeling of the considered dynamics. Hamiltonian Feynman

formulae are related to some phase space Feynman path integrals; such integrals are

important objects in quantum physics. The main part of these formulae is proved with

the help of the Cherno� theorem; some formulae are obtained on the base of the Iosida

approximations. Feynman formulae de�nition was introduced by O.G. Smolyanov [3].

See also overviews [4-6].

User
Typewritten text


User
Typewritten text
23



The Remizov theorem [7-8] is used in the second part of the talk to prove Quasi-

Feynman formulae for complex coe�cients case in the equation. Quasi-Feynman for-

mula is a representation of a function in a form which includes multiple integrals of

an in�nitely increasing multiplicity. The di�erence from a Feynman formula is that

in a quasi-Feynman formula summation and other functions/operations may be used

while in a Feynman formula only the limit of a multiple integral where the multiplicity

tends to in�nity is allowed. The de�nition of the Quasi-Feynman formula was pre-

sented by I.D. Remizov, and the words ¾Quasi-Feynman formula¿ was suggested by

O.G. Smolyanov.
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Reduced ODE systems governing coarsening dynamics of dewetting liquid films

Kitavtsev G.

In this talk an overview of certain classes of high-order degenerate parabolic PDEs

describing dewetting process in thin liquid films and demonstrating long time coarsening

of special localized metastable solutions is presented. As a part the reduction of the

dynamics governed by thin film type equations onto an ’approximate’ finite-dimensional

invariant manifold is derived following the approach in [1]. This corresponds physically to

the late phase evolution of thin liquid films dewetting on a solid substrate, where arrays

of drops connected by an ultrathin film of thickness ε undergo a slow-time coarsening

dynamics. Respectively, our asymptotic approximation of the corresponding invariant

manifold in the limit ε→ 0 is parametrized by a family of droplet pressures and positions.

Subsequently, reduced systems of ODEs for the dynamics on the manifold are derived

for different slip regimes considered at the solid substrate. Subsequently, dependence of

the coarsening rates (i.e. the law describing how fast the number of drops decreases

in time) on the physical parameters is analyzed. In the limiting case of free suspended

films existence of a threshold for the decay of initial distributions of droplet distances at

infinity at which the coarsening rates switch from algebraic to exponential ones is shown.
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Fractals and path integrals in three-dimensional wave equation

A. A. Potapov¹, A. E. Rassadin²
¹Kotel’nikov Institute of Radio Engineering and Electronics of RAS; <potapov@cplire.ru>

²Nizhny Novgorod division of A. S. Popov’s STSREC; <brat_ras@list.ru>

Let us consider three-dimensional wave equation for function ),( txu  :

ua
t
u



 2

2

2
,                                                           (1)

where a is phase velocity and  is Laplacian. This equation describes a lot of different physical
phenomena.

It’s easy to see that one can represent equation (1) as a system:

1
2

2
1 












 a

t
a

t
.                          (2)

In this system ),(),(1 txutx 
 and fractional operator  is Hermitian operator which

may be called by analogy with quantum mechanics by ‘absolute value of momentum operator’.
This operator possesses by inverse operator 21)(  acting on arbitrary function )(xf  as
follows:

 





 

2

3

2
21

||
)(

2
1)()(

xx
xdxfxf 





.                                     (3)

It means in particular that function ),(2 tx can be expressed from the first equation of

system (2) via
t

txu


 ),(  .

Using Pauli matrix








 


0
0
i

i
y (4)

one can rewrite system (2) as equation for two-dimensional vector T),( 21   :







 ya

t
i . (5)

Due to identity 12 y it’s possible to find that this Schrödinger type equation has the next
unitary operator of evolution:

)exp(
2

1
)exp(

2
1

)exp( 





 atiatiati yy
y


 ,        (6)

therefore vector ),( tx can be expressed via it’s initial state )0,(x :

  xdxtxxtx 3)0,();,(),( 
 ,                                      (7)

where Green’s matrix for equation (5) is equal to:

);,(
2

1
);,(

2
1

);,( txxGtxxGtxx yy 





   
. (8)

It’s easy to check that Green’s function is:

0)()(
1

2
|)exp(|);,( 222 







itaxxta
ixatixtxxG 




.          (9)

On the other side Green’s function (9) can be expressed by Feynman integral:
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  





  



2

)()(]|))(|)()((exp[);,(
)(

)0( 0

QdPddPaQPitxxG
xtQ

xQ

t 





.         (10)

In order to calculate path integral (10) one ought to divide interval of time ],0[ t on N
equal parts and to approximate coordinates )(Q


and momenta )(P


by:

,],[,)(,)()()( 11   jjjjjjj PPQQQQ 


(11)

where   jj , Nt , Nj ,0 . In means in particular that coordinates may walk on

fractal trees in 3R . Furthermore dynamics of momenta proves to obey to succession map
)(1 jj PFP


 . If map 33: RRF 


satisfies to conditions of Williams-Hatchinson theorem [1]

then momenta also form fractal set in 3R . On the other hand in such map also may take place
chaotic behaviour for instance for generalized Henon map [2].

Thus representation of Green’s function (9) by path integral (10) gives us the possibility to
introduce quantum quasiparticle related with input equation (1) as object moving along fractal
trajectories in six-dimensional phase space ),( QP


. In honour of outstanding physicist of the 20th

century Richard Feynman we call this quasiparticle by ‘feynmanon’. But we underline that
initially wave equation (1) is purely classical. And appearance of quantum quasiparticle in our
consideration is direct consequence of nonlocality in system (2).

In conclusion it should be noted that one can quantize massless scalar field ),( txu  with the
help of annihilation )(ˆ pc  and creation )(ˆ pc  operators [3]:

 
 23

3

)2(||2
.].)||exp()(ˆ[),(ˆ

pa
pdchtpaixpipctxu 

 .           (12)

where measure corresponds to following Bose canonical commutative relations [3]:
)()](ˆ),(ˆ[ pppcpc  

 , 0)](ˆ),(ˆ[ pcpc  ,                                   (13)
one can calculate the next operator:

xdtxua
t

txuH 32
22

:)),(ˆ(
2

),(ˆ
2
1:ˆ  



























.                       (14)

The result equals to
pdpcpcpaH 3)(ˆ)(ˆ||ˆ     (15)

and exactly coincides with Hamiltonian of massless scalar field (9) [3]

xdtxua
t

txuH 32
22

:)),(ˆ(
2

),(ˆ
2
1:ˆ  



























(16)

acting in Fock space.
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Feynmanons in the Korteweg-de Vries equation

A. A. Potapov¹, A. E. Rassadin²
¹Kotel’nikov Institute of Radio Engineering and Electronics of RAS; <potapov@cplire.ru>
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It is well known that Cauchy problem for the Korteweg-de Vries (KdV) equation:

),()0,(,,0,06 03

3
xuxuxt

x
u

x
uu

t
u











 (1)

describes a wide range of physical phenomena [1]. In order to find exact solution of the KdV
equation (1) one ought to solve the Gelfand-Levitan-Marchenko (GLM) equation [1]:

0);,();();();,(  


x

dztzxKtzyBtyxBtyxK .                   (2)

Let us now consider the situation when initial condition )(0 xu in (1) is the potential hump.
In this case stationary Schrödinger equation connected with this potential )(0 xu :

0))(( 02

2
 

 xu
dx
d (3)

has no discrete spectrum. Therefore the kernel ),( txB of the GLM linear integral equation (1)
can be expressed as [1]:


 




2

)8exp()(),( 3
0

dptpixpipbtxB ,                    (4)

where )(0 pb is reflection coefficient for equation (3).
It is easy to see that kernel (4) obeys to the following linearized KdV equation:

08 3

3









x
B

t
B .                                                     (5)

Thus function (4) is equal to convolution of Fourier transform )0,(xB of reflection
coefficient )(0 pb with Green’s function of equation (5):






 xdxBtxxGtxB )0,();(),( ,                                 (6)

which can be expressed through the well-known Airy function:















33 3232

1);(
t

xAi
t

txG . (7)

On the other side equation (5) can be rewritten as nonstationary equation of Schrödinger-
like type namely:

BH
t
Bi ˆ


 (8)

with Hamiltonian 3ˆ8ˆ pH  , where xip ˆ is operator of momentum.
It means that quite similarly to Green’s function of Schrödinger equation for free particle

Green’s function (7) can be represented by the following Feynman integral:
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dQdPdPQPi
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xxAi
t

xtQ

xQ

t
 .   (9)

Due to this expression we take the opportunity to introduce quantum quasiparticle related
with equation (5) as object moving along trajectories in two-dimensional phase space ),( QP and
to call this quasiparticle by ‘feynmanon’. In report [2] it is shown that in these situations the
large majority of these trajectories are fractal. Furthermore dynamics of momenta proves to obey
to succession map )(PfP  which may possess by chaotic behaviour and may be closely
related with fractional derivatives.

Moreover the kernel of the GLM equation has another Feynman integral because two-
dimensional plane wave in formula (4) equals to [3]:







 

dd
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

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where ),( txx  , )8,( 3ppk 


and


 




2

1 2
)()(

j

jj dQdP
d

 


 (11)

is Feynman’s pseudomeasure in four-dimensional phase space ),( QP


.
The exact solution of problem (1) can be expressed through the solution );,( tyxK of the

GLM equation (2) as follows [1]:

x
txxKtxu





);,(2),( .                                                  (12)

It means that feynmanons penetrate very deep into the KdV equation may be because of
Schrödinger equation (3) in starting point of our analysis.

In conclusion it is necessary to underline that one can find from generalized uncertainty
relations [4] that under some assumptions solution of equation (5) obeys to the following
inequality (parameters 0x and 0p are positive):










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
 




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x

dppbxpdxtxB


 ,      (13)

where )(0 c is maximal eigenvalue of integral equation:
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)](sin[1
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







(14)

for prolate spheroidal wave functions [4].
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Global well-posedness and attractors

for the hyperbolic Cahn-Hilliard-Oono equation in the whole space

Savostianov A., Zelik S.

University of Surrey

a.savostianov@surrey.ac.uk, s.zelik@surrey.ac.uk

The talk is devoted to the so called hyperbolic relaxation of Cahn-Hilliard-Oono equa-

tion in R3 with sub-quintic non-linearity. Based on Strichartz estimates for Schrodinger

equation the global well-posedness for the original problem is proven that drastically

improves admissible growth of the nonlinearity known before. Furthermore, existence

of the compact global attractor for the corresponding semi-group, its smoothness and

�nite fractal dimensionality are established. If time permits similar results related to the

damped wave equation will be discussed. The work is joint with Prof. Sergey Zelik.

A gradient flow approach to a fractional porous medium equation

Segatti A.

Università di Pavia

antonio.segatti@unipv.it

In this seminar I will describe how the following fractional porous medium equation,

recently introduced and studied by Caffarelli & Vázquez,∂tu− div(u∇v) = 0 in Rd × (0,+∞),

(αI −∆)sv = u in Rd × (0,+∞), s ∈ (0, 1), and α ≥ 0,

can be interpreted as a gradient flow in the space of probability measures endowed with

the Wasserstein distance.

This is a joint project with S. Lisini (Pavia) and E. Mainini (Genova).
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