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Strongly Perturbing the Rossler Attractor:
a case for stochastic-like resonance
and its biological relevance

Basios, V.

Université Libre de Bruzelles (ULB)
Interdisciplinary Centre for Nonlinear Phenomena and Complex Systems (CeNoLi) &
Service de Physique des Systémes Complezes et Meécanique Statistique, Brussels, Belgium.
vbasios@ulb.ac.be

The effect of noise in non-linear dynamical systems, although extensively studied,
never ceases to surprise us with its unexpected rich repertoire of counter intuitive re-
sults. The delay of bifurcations, its stabilizing effects and phenomena such as stochastic
resonance add to the enrichment of dynamical behaviour of non-linear systems when per-
turbed by randomness. The case we present here consist of a strong parametric perturba-
tion of the Rossler system in its chaotic regime since this system serves as an archetypal
example of chaotic dynamics after the seminal pioneering work of L. Shilnikov. We re-
port the detection a stochastic resonance-like phenomenon and discuss the challenges of
its mathematical description. We shall also relate this kind of parametric perturbations’
utility for biologically important phenomena like stochastic circuit switching in genes and
neural systems and touch on the subject of decision mechanisms utilizing a stochastic
switch. Finally we will briefly explore its relevance to symbolic dynamics generated by
coarse grained dynamical systems.

On trajectory attractor approximations of the 3D Navier-Stokes
system by various hydrodynamical alpha-models

Chepyzhov V.V.

Institute for Information Transmission Problems, RAS, Russia;
National Research University Higher School of Economics, Russia
chep@Qiitp.ru

An a-model is a mollification of the 3D Navier-Stokes (NS) system in which the
smoothing is performed by some predefined filtering of the velocity arguments in the
nonlinear term of the original NS system [1, 2|. Examples of such systems are: the La-
grangian averaged NS-a model or viscous Camassa—Holm equations, the Leray-a model,
the simplified Bardina-a model. It was demonstrated analytically and computationally
in many works that these a-models are useful tools in the study of the motion of large
eddy currents. It was also proved that the Cauchy problems for the mentioned above
a-models are well-possed and they possess global attractors [3, 4].

In the present work, we study the limits as @« — 0+ for the long-time dynamics of
various a-models of viscose incompressible fluid and their relations with the trajectory
attractor of the exact 3D NS system. An a-models is characterized by its nonlinear term
that approximate and regularize in some sense the standard bilinear term of the classical
3D NS system. We partition the considered a-models into two classes depending on the



orthogonal properties of their mollifying nonlinear terms. We show that attractors of
a-models from Class I attracts the trajectories stronger than the attractors of a-models
from Class II.

We consider bounded (in the energy norm) families of solutions of a given a-model
for 0 < a < 1. For a = 0, we formally have the classical 3D NS system for which the
uniqueness theorem (on the entire time semi-axis) of the (existing) weak solution of the
Cauchy problem is not proved yet. However, for the 3D NS system, we can construct the
trajectory attractor 2y which describes the dynamics of the system in the corresponding
local weak topology [5, 6.

For both classes of a-models, we prove that the bounded families of trajectories of the
considered a-model converge to the trajectory attractor 2y of the exact 3D NS system
as time ¢ tends to infinity and o — 0+ in the local weak topology.

In particular, we show that the trajectory attractor 2, of a given a-model converges
to the trajectory attractor 2y of the 3D NS system as a« — 0+ in the considered local
weak topology.

For all a-models, we have constructed the minimal limits 2,,,;, C %Ay of their trajectory
attractors %A, as a — 0 + . We have proved that each set 2., is a compact connected
component of the trajectory attractor 21y. Moreover, all sets 2, are strictly invariant
with respect to time translation semigroup.

The work is partially supported by the Russian Foundation of Basic Researches
(projects no. 14-01-00346 and 15-01-03587) and the Russian Science Foundation (project
no. 14-50-00150).
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Stability analysis of abstract systems of Timoshenko type
Dell’Oro Filippo

Institute of Mathematics of the Academy of Sciences of the Czech Republic
delloro@math.cas.cz

We consider an abstract system of Timoshenko type
P16+ aAz(Azp +1h) =0
poth + DAY + a(A2p + 1) — A0 =0

036 4+ cAf + §A ) = 0

where the operator A is strictly positive selfadjoint. For any fixed real ~ the stability
properties of the related solution semigroup S(t) are discussed. In particular, a general
technique is introduced in order to prove the lack of exponential decay of S(¢) when the
spectrum of the leading operator A is not made by eigenvalues only, which is always the
case if its inverse A~! is not compact.

Asymptotic behavior of dynamical systems arising in fluid mechanics
E. Feireisl (Czech Republic)

We consider a system of equations modelling the evolution of an energetically isolated
fluid system driven by external volume forces of various types. The existence of absence
of attractors for such a system is discussed. We also show stabilization to equilibrium
enforced by highly oscillating external forces with growing amplitude.

Asymptotic properties of invariant measures for stochastically
forced Boussinesq equations

Foldes J. (USA)

Parabolic Equation of normal type
connected with 3D Helmholtz system.

Fursikov A.V.

Moscow State University, fursikov@gmail.com

We consider normal parabolic equations (NPE) connected with 3D Helmholtz equations
whose nonlinear term B(v) is orthogonal projection of nonlinear term for Helmholtz
system on the ray generated by vector v. We will describe the structure of dynamical
flow corresponding to this NPE and explain why this NPE can be interesting. Our main
goal is to study nonlocal stabilization problem for NPE introduced above by starting
control supported on arbitrary fixed subset with nonempty interior. The main steps of
solution to this problem will be discussed.



Approximation of groups, characterizations of sofic groups,
and equations over groups.

Lev Glebsky
IICO-UASLP, Mezico glebsky@cactus.iico.uaslp.mx

Sofic groups was defined in relation with the Gottscholk surjunctivity conjecture.
Hyperlinear groups was introduced in relation with Connes’ embeding conjecture. It is
known that sofic groups are hyperlinear, the other inclusion is an open question.

Some famous conjecture in group theory (Kervaire, Gottscholk, Connes’ embedding
conjectures) are proved to hold for sofic groups. It is also known that some important
classes of groups are sofic, for example, amenable, residually amenable, extensions of
amenable by sofic, etc.

An open question is if all groups are Sofic (Hyperlinear).

Classically, sofic (hyperlinear) groups are defined as metric approximation by sym-
metric groups (unitary groups). It is possible to define metric approximation by different
classes of groups.

By definition, the metric approximation depends on invariant length functions and a
class of groups. The structure of the set of invariant length functions on a group depends
on the algebra of the conjugacy classes of this group. The aim of the present talk is
to define and investigate the notion of approximation based on products of conjugacy
classes without direct use of any length functions. Such approximations will be called
K-approximations. Let Sym, Alt, Nil, Sol, Fin be the classes of finite symmetric, finite
alternating, finite nilpotent, finite solvable and all finite groups, respectively. We show
that the classes of Alt-approximable groups, Sym-approximable groups, and sofic groups
coincide. Fin-approximable groups are called weakly sofic.

Dynamical properties of logistic equation with state-dependent delay
Golubenets V.

Yaroslavl State University, golubenets2010@yandez.ru
Local dynamics of classical Hutchinson’s equation
N=AN(1—-N@{t—-1), A>0
is well known. In this report we consider more general form of this equation, namely:
N =AN(1—N(t—T(N))), A>0, (1)

where function T'(N) plays the role of state-dependent delay, and discuss its local dynam-
ical properties. Namely, we investigate dynamics of equation (1) in a small neighborhood
of its positive equilibrium at A close to critical value /2.

We make the next assumptions on 7'(N): it is analytical near N = 1, positive in
its definition region, bounded by positive constant 77 and 7'(1) = 1. The expansion of
T(N) in the Taylor formula is

T(N)=1-a(N—1)=B(N -1 +o0((N—-1)?),
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where o and [ are nonzero parameters. All the considered solutions of the equation (1)
are assumed to be bounded.
Using known local method we construct normal form for equation (1):

72 = pz +vzlz|?

Then we analyze this obtained equation and determine values of parameters o and f
in which supercritical Andronov — Hopf bifurcation occurs in equation (1( near positive
equilibrium at A close to critical.

Quasi-Feynman formulas for the one-dimensional Schrodinger equation
with a bounded smooth potential via the Remizov theorem

Grishin D. V., Smirnov A. V.

Bauman Moscow State Technical University
grishind@yandez.ru, smirnov.toxa@gmail.com

Quasi-Feynman formula is a representation of a function in a form which includes
multiple integrals of an infinitely increasing multiplicity, see [1]. The first toy-model
for the Remizov theorem (theorem 3.1 in [1]) was suggested by A.S.Plyashechnik. The
model was a one-dimensional Schrodinger equation with a bounded smooth potential.
We prove that the conditions of the Remizov theorem are satisfied and show the arising
quasi-Feynman formulas.

Consider the Cauchy problem in L?(R)

{ﬁ%ﬂ:—¥%@+vwwmxteRweR
¥(0,2) =o(x); z€R

Above a is a non-zero number, 0 # a € R, and V' a bounded function with bounded
continuous derivative, V € C} (R, R).

We show that the solution of this Cauchy problem can be obtained in the form of
the quasi-Feynman formula

b (1) gy (sien ()™ [ n \ Y2
Y(t,x) = lim lim ZZ( D (sign(t)) ( ) X

2(m—q)! 2n1

x/.../exp{—%' %V(x)—i—;‘/(x—l-;yj)] —th;y?}x
R R

q q
x f (93 + Zw) 11 v
j=1 p=1
References

[1] I. D. Remizov. Quasi-Feynman formulas — a novel method of obtaining approxi-
mations for a Schrédinger group.// The latest version of arXiv:1409.8345
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Bifurcation research and stabilization
chaotic systems of Lorenz type

Gurina T. A.

Moscow Aviation Institute (National Research University)
gurina-mai@mazil.ru

The models described multiparameter systems of three differential equations of Lorentz
type (model gyrostat and economic model of the average firm):

T =—0x+0y,y=puxr+vy— Prz,i=—yz+ ary. (2)

As a bifurcation parameters considered p, v, v and the parameters «, (3, 9, o are fixed.
For special points system built partition Space bifurcation parameters on the field ac-
cording to the type of rough singular point of the linearized system. When crossing
the border field of saddle-focus with positive real part couples complex conjugate roots
going Andronov-Hopf bifurcation the birth of a stable limit cycle, followed by a cascade
period-doubling bifurcations cycle and subharmonic cascade Sharkovskii ending cycle
period of the birth of three. A further change in the parameters appear in the system
cycles homoclinic bifurcation cascade leading to the formation strange attractor. Using
systems and transformations evidence of calculations show the existence of homoclinic
the trajectory of a saddle-focus, the destruction of which is the main homoclinic bifur-
cation cascade, and identify areas parameters in which it exists. Bifurcation diagrams,
graphs Lyapunov exponents,saddle of graphics, fractal dimension of the strange attrac-
tor. Objectives stabilization of unstable singular points of these systems solved extended
by the control system. The parameters control systems to ensure the stabilization of the
singular point in the range of the main bifurcation parameter, covers an area of chaos.
References
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Attractors for the 2D damped Navier-Stokes system
on large periodic domains and in R?

Ilyin A.A.

Keldysh Institute of Applied Mathematics
wlyin@keldysh.ru

We consider the damped and driven Navier—Stokes system
Ou+ (u, Vu+ Vp+ au =vAu+g, divu=0. (3)

with additional dissipative term au, a > 0, modelling the Ekman friction.



In the case of a periodic domain z € [0,27L]? it was shown in [1] that the system
possesses a global attractor A (in L?) with finite fractal dimension

lg||L 1g|?
s A §m1n< /g lewrlglL 3 flem g||)‘ "

726 8 wvad

We observe that both estimates are of the order 1/v as v — 0 and this rate of growth
of the dimension is sharp [1].

For the system (3) on the elongated periodic domain z € [0, L] x [0, L/v], v < 1 we
have the estimates (provided that o > (5/8)v/L?)

2
dim; A < min 12M’6 l_i_\/? M 7 (5)
VY va T T vos

in which the rate of growth 1/v is also sharp as v — 07 and v — 07 [2].

While the first estimates in (4), (5) blow up as L — 0o, the second estimates survive.
Therefore, one might expect that these estimates hold for L = oo, that is, for z € R?,
and a motivation of the present work [3] is to show that this is indeed the case.

Theorem. Let x € R? and let the right-hand side g belong to the scale of homoge-
neous Sobolev spaces H®, s € [—1,1]. Then

1—s2 (1+]s\* 1
di <
im; A < 64v/3 (1_ s a2+sy275”9|

In particular, for s =1 we obtain

e s€[-1,1]

1 1¢l|?
dimy 4 < —L_llcwal
1613 va

The last estimate up to a constant coincides with the second estimates in (4), (5)
proving thereby our expectation.

Acknowledgements. This work was done with the financial support from the Rus-
sian Science Foundation (grant no. 14-21-00025).
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Normalization of equations with two delays of different order
Kashchenko I.

Yaroslavl State University
tkashchenko@Qyandex.ru

Consider the equation with two delays
t+x=ax(t—"T)+bx(t —T3) + f(z.x(t —T1),z(t — T3)), T1>T,>0,

where f(x,y, z) is nonlinear function (f(0,0,0) = 0). Main assumption is that both 7}
and Ty are asymptotically large and 71T ' is large too. Let Ty = ¢!, where 0 < £ < 1.
Then Ty = e~ (ko+£%;1) (o > 0). The problem to research is to determine the behavior
of solutions in some small (but independed of ) neighbourhood of zero equilibrium state.
The method of investigations is so-called method of quasinormal forms.

We proof that if |a| + |b] < 1 then z = 0 is stable and if |a| + |b] > 1 then zero is
unstable. So |a| 4 |b] =1 is critical case.

In critical case we construct special evolutionary equations (quasinormal forms).
Their non-local dynamics determines the local behavior of solutions of the original equa-
tions. The particular kind of quasinormal forms is highly depends on parameter a.
There are three different situations: (1) a« <1, (2) a =1 and (3) a > 1. Also, there are
important situation when b is small, so we have small multiplier at the term with largest
delay.

This work was supported by project no. 984 within the base part of state assign-
ment on research in YarSU and by a grant from President of Russian Federation (MK-
5572.2015.1)

Periodic and chaotic dynamics of weakly nonlinear shock waves
Kasimov, A. R. and "?Faria, L. M. and ?Rosales, R. R.

LKing Abdullah University of Science and Technology, Thuwal, Saudi Arabia
2 Massachusetts Institute of Technology, Cambridge, MA, USA
aslan.kasimov@kaust.edu.sa

Weakly nonlinear multi-dimensional shock waves are characterized by small ampli-
tude and weak curvature of the shock front. When such waves propagate in a chemically
reacting gas, the energy released in chemical reactions can make them self-sustained (they
are called detonations). We derive an asymptotic model for the dynamics of these waves
from the compressible reactive Navier-Stokes equations. The resultant model in 2D and
in dimensionless form is given by (Faria, L. M. and Kasimov, A. R. and Rosales, R. R.,
An asymptotic theory of weakly non-linear detonations, http://arziv.org/abs/1407.8466,
2014)

1
uptute +vy = =5 T+ ple

Vp = Uy

Ae = —k(1=NeT —d

KT, +T = u+g\+ qd),.
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where u,v is the velocity field, T' is the temperature, and A\ € [0, 1] is the variable
measuring the fraction of the chemical energy, ¢, released in the reactions. The pa-
rameters ju, k, and d are coefficients of viscosity, heat conduction, and diffusion, re-
spectively. Parameters k and 6 characterize the heat release rate. This system is a
generalization of the models of small disturbance unsteady transonic flow, weakly non-
linear acoustics (Zabolotskaya-Khokhlov (ZK) equation), and water waves (dispersion-
less Kadomtsev-Petviashvili (KP) equation). Without chemical and dissipative terms
(0 =k =d = q=0), our model reduces to (u, + uu,), + u,, = 0, which is the same
as ZK or dispersionless KP equation. The model predicts regular and irregular multi-
dimensional patterns, and in 1D exhibits transition from steady and stable traveling
waves to oscillatory traveling waves through a Hopf bifurcation as # is increased. A
cascade of period-doubling bifurcations leading to chaos is also observed.

On linear stability and dispersion for
crystals in the Schrodinger-Poisson model

A.1. Komech, E.A. Kopylova

Faculty of Mathematics of Vienna University and
Institute for Information Transmission Problems RAS
akomech@iitp.ru

We consider the Schrodinger-Poisson-Newton equations as a model of crystals. Our
main results are the well posedness and dispersion decay for the linearized dynamics at
the ground state. This linearization is a Hamilton system with nonselfadjoint (and even
nonsymmetric) generator. We diagonalize this Hamilton generator using our theory
of spectral resolution of the Hamilton operators with positive definite energy [?, 7],
which is a special version of the M. Krein-H. Langer theory of selfadjoint operators in
Hilbert spaces with indefinite metric. Using this spectral resolution, we establish the
well posedness and the dispersion decay of the linearized dynamics with positive energy.

Our key technical result is the energy positivity for the linearized dynamics with
small elementary charge e > 0 under a novel Wiener-type condition on the ions positions
and their charge densitities. We give examples of crystals satisfying this condition.

The main difficulty in the proof of the positivity is due to the fact that for e = 0
the minimal spectral point Ey = 0 is an eigenvalue of infinite multiplicity for the energy
operator. To prove the positivity we study the asymptotics of the ground state as e — 0

and show that the zero eigenvalue E, = 0 bifurcates into E, ~ 2.



On asymptotic stability of kinks for
relativistic Ginzburg-Landau equation

Kopylova E. A.

Faculty of Mathematics Vienna University and
Institute for Information Transmission Problems RAS
elena.kopylova@Qunivie.ac.at

We consider nonlinear relativistic wave equation in one space dimension

¢($7t) = w”(x’t) + F(¢(x’t))7 r € R, F(@/}) = _U,(¢)’ (6)

where U(v)) is a potential of Ginzburg-Landau type
Uy) ~ (¢* = 1)%/4.
The kink is a nonconstant finite energy solution of stationary equation
s(x) ~ tanh z/v/2.
The corresponding moving kinks or solitary waves
se0(t) = s(x —vt —q), queER, Ju| <1, vy=1/V1—-12

are the solutions to equation (1). Our main results are the following asymptotics

(P(x,t), (2, 1) ~ (Squwse (T — Vot — qu)y Sqp oy (T — vt — qu)) + Wo(t) Py, ¢ — £o0

for solutions to (1) with initial states close to a solitary wave. Here Wy (¢) is the dynamical
group of the free Klein-Gordon equation, @, are the corresponding asymptotic states,
and the remainder converges to zero in the “global energy norm” of the Sobolev space
H'(R) ® L*(R).

The proof techniques depend on the spectral properties of the linearized equation
and may be regarded as a modern extension of the Lyapunov stability theory. Crucial
role in the proof play our results on dispersion decay for the corresponding linearized
Klein-Gordon equations. We also construct an examples of nonlinear equations with
prescribed spectral properties of the linearized dynamics.
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Inertial manifolds for the 3D Cahn-Hilliard equation
with periodic boundary conditions

Kostianko A., Zelik S.

Unaversity of Surrey
a.kostianko@surrey.ac.uk, s.zelik@surrey.ac.uk

My talk will be devoted to the existence of an inertial manifold (IM) for the 3D
Cahn-Hilliard equation with periodic boundary conditions. In general, the existence of
an IMs requires strong spectral gap condition which is violated in our case. Nevertheless,
it appears that corresponding IM can be constructed using the proper extension of the
so-called spatial averaging principle introduced by G. Sell and J. Mallet-Paret. This is
the joint work with Prof. Sergey Zelik.

From the Fermi-Pasta-Ulam model to the high-order nonlinear
evolution equations

N. Kudryashov

National Research Nuclear University MEPhI, Moscow
nakudryashov@mephi.ru

Three coupled rotators: from Anosov dynamics to hyperbolic attractor
S. P. Kuznetsov

Institute of Radio-Engineering and Electronics of RAS, Saratov Branch
Saratov State University
spkuz@yandex.ru

The work presents an example of a system with chaotic dynamics built of three rota-
tors by modifying a conservative system with hyperbolic Anosov dynamics [1]. Results
of a computational study of chaotic dynamics are considered (portraits of attractors,
time dependences of the variables, Lyapunov exponents, and spectra) and good corre-
spondence is observed between the dynamics on the attractor of the proposed system
with the reduced model, characterized by the Anosov dynamics at appropriately defined
energy [2|. The work is supported in part by RFBR grant No 15-02-02893 and by RSF
grant No 15-12-20035.

1. Hunt T.J. and MacKay R.S., Anosov parameter values for the triple linkage and a
physical system with a uniformly chaotic attractor // Nonlinearity. 2003. Vol. 16.
P. 1499-1510.

2. Kuznetsov S.P., Chaos in the system of three coupled rotators: from Anosov dy-
namics to hyperbolic attractor // Izvestiya of Saratov University. New series.
Series Physics. 2015. Vol. 15. No. 2. P. 5-17. (In Russian.)
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The axially symmetric dynamics for dissipative parabolic
equations on the sphere

F. Lappicy (Brasil)

Dissipative scalar parabolic equations on an interval have well known dynamics, and
in particular the attractors can be constructed explicitly. Such construction use the
zero-dropping property and a permutation related to the equilibria equation.

We are interested in the dynamics of dissipative parabolic equations on the sphere.
In particular, axially symmetric solutions can be reformulated as an equation on an
interval. However, there is a coefficient that is singular at both boundary points. We
adapt a method used by Chen and Polacik to prove that the zero-dropping property still
holds. Moreover, we show the difficulties of constructing a permutation as it was done
by Fusco and Rocha. Lastly, it is shown how both this ingredients can be combined
to construct the attractor explicitly, as it was done by Brunovsky, Fiedler, Rocha and
others.

Some recent results on tempered pullback attractors for
non-autonomous variants of Navier-Stokes equations

Marin-Rubio, P.

Dpto. Ecuaciones Diferenciales y Andlisis Numérico, Universidad de Sevilla (SPAIN)
pmrQus.es

During the last years, there have been several different approaches to non-autonomous
dynamical systems for time-dependent problems and their long-time behaviour. In this
talk I will focus on pullback attractors associated to some variants of Navier-Stokes
(NS) equations with time-dependent terms. Issues to be analyzed in the exposition will
include non-local (time) effects, tempered universes and tempered behaviour, regularity,
and even well-posedness of some problems related to NS with and without delay, and
others like Navier-Stokes-Voigt.

This talk is based partially in some works done in collaboration with J. Garcia-Luengo
(Universidad de Sevilla, Spain), G. Planas (IMECC, Universidade Estadual de Camp-
inas, Brazil), J. Real (Universidad de Sevilla, Spain), and J. C. Robinson (University of
Warwick, UK).

[1] J. Garcia-Luengo, P. Marin-Rubio, G. Planas, Attractors for a double time-delayed
2D-Navier-Stokes model, Discrete Contin. Dyn. Syst. 34 (2014), 4085-4105.

[2] J. Garcia-Luengo, P. Marin-Rubio, J. Real, H*-boundedness of the pullback at-
tractors for non-autonomous 2D Navier-Stokes equations in bounded domains, Nonlinear
Anal. 74 (2011), 4882-4887.

[3] J. Garcia-Luengo, P. Marin-Rubio, J. Real, Pullback attractors in V' for non-
autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential
FEquations 252 (2012), 4333-4356.

[4] J. Garcia-Luengo, P. Marin-Rubio, J. Real, Pullback attractors for three-dimensional
non-autonomous Navier-Stokes-Voigt equations, Nonlinearity 25 (2012), 905-930.
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[5] J. Garcia-Luengo, P. Marin-Rubio, J. Real, Pullback attractors for 2D Navier-
Stokes equations with delays and their regularity, Adv. Nonlinear Stud. 13 (2013),
331-357.

[6] J. Garcia-Luengo, P. Marin-Rubio, J. Real, J. C. Robinson, Pullback attractors for
the non-autonomous 2D Navier-Stokes equations for minimally regular forcing, Discrete
Contin. Dyn. Syst. 34 (2014), 203-227.

[7] J. Garcia-Luengo, P. Marin-Rubio, J. Real, Some new regularity results of pullback
attractors for 2d Navier-Stokes equations with delays, Commun. Pure Appl. Anal. 14
(2015), 1603-1621.

[8] V. K. Kalantarov, E. S. Titi, Global attractors and determining modes for the 3D
Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B 30 (2009), 697-714.

[9] P. Marin-Rubio, J. Real, On the relation between two different concepts of pullback
attractors for non-autonomous dynamical systems, Nonlinear Anal. 71 (2009), 3956—
3963.

Some generalizations of the Cahn-Hilliard equation

Alain Miranville (France)

Our aim in this talk is to discuss the qualitative behavior (existence of finite-dimensional
attractors and blow up in finite time) of variants of the Cahn-Hilliard equation. Such
equations arise in the context of image inpainting and biology.

Multistability in quasiperiodically driven Ikeda map
Pozdnyakov M.V.!, Savin A.V?, Savin D.V.2

YYuri Gagarin State Technical University of Saratov, Saratov, Russia
2 Chernyshevsky Saratov State University, Saratov, Russia
mpozdnyakov@yandex.ru

It is well known that dynamical systems with weak dissipation can demonstrate a
great number of attractors [1]. In this work mechanisms of phase space structure changes
for the system with weak disipation while the quasiperiodical influence to the system is
induced have been investigated using the Tkeda map [2].

The investigated map is given by

Enir = A(l+esin(Q- ¢ - n)) + BE, exp(i| E,|* + i),

where A is control parameter, B is parameter of dissipation, ¢ is amplitude of external
influence, € is frequency of influence, ¢ is phase.

In the work the structure of coexisting attractors and their evolution while ¢ is
changed in the case of weak dissipation are investigated. It is shown that the number
of coexisting attractors decreases in comparison with the case of absence of external
influence. It occurs due to the finite size of torus attractor in contrast to periodical
attractor. The attractor number dependence on the ¢ is studied for different values of A.
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The evolution of attractor basins boundaries while quasiperiodical influence is appended
has been studied.

The work was supported by Russian Foundation for Basic Researches (grant 14-02-
31067).
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Invariant measures and attractors of
non-autonomous Frenkel-Kontovora models

Rabar B.

Faculty of natural sciences - mathematics department, Zagreb
braslav.rabar@yahoo.com

Dissipatively driven Frenkel-Kontorova (FK) model is a system of infinitely many
coupled particles in a periodic potential, with over-damped (or gradient) dynamics, im-
portant in e.g. physical applications. It is related to scalar reaction-diffusion equations,
and can be understood as its discrete-space analogue. We develop ergodic theory for
non-autonomous FK models, and in particular show that the union of supports of all
space-time invariant measures is at most two-dimensional set, mainly consisting of syn-
chronized orbits. This explains experimentally and numerically observed behavior. We
then focus on the ratchet equations (i.e. oscillating site-potential, no external force), and
give rigorous sufficient conditions for existence of transport, again explaining results of
experiments.

Diffusion in Hilbert space equation solved by Feynman formula

Ivan D. Remizov
Bauman Moscow State Technical University
Lobachevcky State University of Nizhny Novgorod
(tvan.remizov@gmail.com)

In this talk I present the results of [1], which are the continuation of [2| and are also
available in [3].

References:

[1] I.D.Remizov. Solution to a parabolic differential equation in Hilbert space via
Feynman formula - I// Modeling and Analysis of Information Systems (MAIS), ISSN:
2313-5417 (online), 1818-1015 (print), No 3 (2015), to appear.

[2] I.D. Remizov, Solution of a Cauchy problem for a diffusion equation in a Hilbert
space by a Feynman formula// Russian Journal of Mathematical Physics, 19:3 (2012),
360-372.

[3] The latest version of the preprint arXiv:1402.1313 [math.FA|.
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On a fractional Cahn-Hilliard equation
Schimperna G.
Department of Mathematics, University of Pavia, giusch04Qunipv.it

In this talk we will present some results related to existence, regularity, and long-
time behavior of solutions to a fractional version of the Cahn-Hilliard equation settled
in a smooth bounded domain Q C R3. More precisely, we will consider the case where
diffusion is ruled by the so-called “restricted Dirichlet fractional Laplacian”, meaning that
homogeneous Dirichlet conditions of “solid” type are assumed on the whole of R*\ Q. In
particular, we will show that, under suitable conditions, the w-limit set of any solution
trajectory consists of a single point. The proof of this fact relies on a new “fractional”
version of the Simon-Lojasiewicz inequality. The results presented in this talk have been
obtained in collaboration with Goro Akagi (University of Kobe) and Antonio Segatti
(University of Pavia).

Controllability implies ergodicity
Shirikyan A. R.
Department of Mathematics, University of Cergy-Pontoise

In this talk, we discuss the interconnection between controllability properties of a dy-
namical system and large-time asymptotics of trajectories for the associated stochastic
system. We begin with a result on the finite-dimensional case which applies to differential
equations on a smooth Riemannian manifold. We show how the approximate control-
lability to a given point and solid controllability imply the uniqueness of a stationary
measure and exponential mixing in the total variation distance. We next turn to prob-
lems in infinite dimension and formulate a sufficient condition (in terms of controllability
properties) for the exponential mixing in the Kantorovich—Wasserstein distance. This
result applies, for instance, to the 2D Navier—Stokes system driven by a random force
acting on the boundary. Finally, we formulate some open problems on controllability
properties of the Navier—Stokes system, which would have interesting applications in the
ergodic theory of the associated random flow.

Intrinsic Shape of Non-Saddle Sets
Shoptrajanov. M, Misajleski. Z

Faculty of Natural Sciences and Mathematics, Macedonia
martin@pmf.ukim.mk
Faculty of Civil Engineering, Macedonia
masajleski@qf.ukim. edu.mk

Asymptotically stable attractors are only a particular case of a large family of in-
variant compacta whose global topological structure is regular. We devote this talk to
introducing this class of compacta, the non-saddle sets. Attractors and repellers are
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examples of non-saddle sets. The main aim of this presentation is to generalize the
well known theorem for shape of global attractors to non-saddle sets using the intrinsic
approach to shape.

Stochastic bifurcations in the Hindmarsh-Rose model
Slepukhina E. S., Ryashko L. B.

Ural Federal University
eudokiya@Qyandex.ru

We study the effects of random disturbances on the Hindmarsh-Rose model [1] of
neuron activity:
T = y—a3+322+ 1 — 2+ e,
j o= 152y (7)
z2 = r(s(x—xo) — 2),

where x is a membrane potential, variables y, z describe ionic currents, I is an external
current; 0 < r < 1 is a time scale parameter; s, xy are other parameters; w is a standard
Wiener process with E(w(t) — w(s)) = 0, E(w(t) — w(s))? = |t — s| and ¢ is a noise
intensity.

We fix r = 0.002, s = 4, xyp = —1.6 and examine the dynamics of the system under
variation of the parameter .

Due to the strong nonlinearity, even the original deterministic (¢ = 0) system demon-
strates very diverse complex dynamic regimes. Random perturbations considerably af-
fect the properties of neuronal systems. Even small stochastic fluctuations can lead to a
significant qualitative changes in the nonlinear dynamics of such systems.

We consider a parametrical zone, where the deterministic system demonstrates both
mono- and bistable dynamic regimes. In the parametric region, where the only attractor
of the deterministic system is stable equilibrium, the phenomenon of stochastic genera-
tion of high-amplitude oscillations is observed. In the parametric zone of the coexisting
stable equilibrium and limit cycle, the system exhibits noise-induced transitions between
the attractors.

These stochastic phenomena are confirmed by the changing of the probability den-
sity distribution of random trajectories. So, under the random disturbances, the system
demonstrates P-bifurcations related to the qualitative change of the distribution of ran-
dom states.

An exhaustive probabilistic description of the stochastic attractors is given by Kolmo-
gorov-Fokker-Planck equation. However, the direct usage of it is very difficult even for the
simplest cases. Various approximations and asymptotics can be used. For the analysis
of the stochastic phenomena in the Hindmarsh-Rose model, we suggest an approach
combining stochastic sensitivity function technique and confidence domains method |[2].
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Dynamics of extended gradient systems
Slijepeevié, S.
Unwersity of Zagreb
slijepce@math.hr

Extended gradient systems are dynamical systems on unbounded domains, which
when suitably restricted to a finite domain are gradient-like. We present general results
on the structure of w-limit sets, invariant measures, and stability of equilibria and invari-
ant manifolds. We then apply the results to a series of examples, illustrating similarities
and differences with gradient-like systems.

The general theory yields some new results in the following examples on unbounded
domains: dynamics of various reaction-diffusion equations (with energy, entropy, and
Zelenyak /Matano/Fiedler /Rocha-like Lyapunov functions); dynamics of unforced Navier-
Stokes equation in 2D; construction of orbits and measures of Lagrangian systems and
related formally gradient dynamics of the action functional; and finally asymptotics of
some Markov chains on infinite lattices and related phase transitions. For such systems
we also often obtain new bounds on relaxation times on bounded domains, independent
of the domain size.

A larger part of the work is a joint work with Thierry Gallay.

Chaos, hyperchaos and quasiperiodicity
in the system of coupled Toda oscillators

Stankevich N.V., Astakhov V.V.

Yuri Gagarin State Technical University of Saratov
stankevichnv@mail.ru

Coupled oscillator systems play important role in the study of chemical, biological
and physical processes [1]. Synchronization is a fundamental nonlinear phenomenon
occurring via interaction of self-sustained oscillators. However, one can consider the
dynamics of interacting dissipative oscillators with external driving force, which have
stable point and have not stable limit cycle in phase space without driving. In the series
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papers [2-5| was revealed, that in ensembles of coupled dissipative oscillators can be
observed such phenomena as synchronization, quasiperiodic oscillations and other.

In the present paper we consider such problem on the example of Toda oscillator.
We consider coupled two and three oscillators excited by antiphase periodic harmonic
signal. We discuss the features of occurrence quasiperiodic oscillations in such system
and attempt to realize three-frequencies quasiperiodic oscillations. In the such systems
was obtained chaotic oscillations with different amount of Lyapunov exponents (one, two
and three). We consider different scenarios of transitions to different chaotic regimes.
In order to get enough complete picture of dynamics regimes of such systems, were
considered systems with different topology of coupling: chain and ring. For this systems
chart of Lyapunov exponents on the different parameter plane were constructed.

This research was supported by the grant of RFBR No. 14-02-31064.
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YIIPABJIEHVE ATTPAKTOPA IIJILIKNHA METOJ0M ITUPATACA
C. T. Beasikun, C. II. Kysnenos!

MockoBcknit rocyiapcrBernbiit yauusepcurer uM. M.B.Jlomonocosa,
dusmyeckuit pakynbrer, Kad. obmeit pusuku, Poccus, 119991, r.Mocksa, Jlenunckue
Toper, Tem. (495) 939-51-56, e-mail: bst@newmail.ru
!Caparosckuit dpuman VHCTUTYTa paJMOTEeXHUKI U 9JEKTPOHUKH,

Poccust, 410019, r. Caparos, yi. 3enenas 38, Ten. (452) 278-68-5, e-mail:
spkuz@yandex.ru

Kak n3BecTHO, Xa0THIECKHUE CUCTEMbI UPE3BLIYAiHO 1yBCTBATEILHBI K BHEIIIHAM BO3-
JEHCTBUAM. DTa 0COOEHHOCTD OCJIYKIJIA IIPEIIIOCHIIKON JIJIsT CO3MaHIs HOBBIX METOIOB
yipaBJI€eHU A HeJINHENHBIMU CUCTEMaMU U II0JaBJICHNA B HUX XaOCa. B ,[LaHHOﬁ pa6OTe
U3ydaeTcst BO3MOXKHOCTH CTaOUIN3aIMN XaO0THYEeCKUX KOjeDaHuil B cucTemMax ¢ TUIep-
6OIMIECKIM THIIOM aTTPaKTOPa HOCPEJICTBOM OOPATHON CBSA3U M CUHYCOUIAILHOTO BO3-
MY ILIECHUS.

MuozkecTBO A Ha3BIBAETCS TUMIEPOOTUICCKIM ATTPAKTOPOM JTUHAMUIECKON CUCTEMBbI,
eCJIn A — 3aMKHYTO€ TOIIOJIOTUYIECKU TPaH3UTUBHOE I‘I/IHep6OHI/IquKOe MHO>KECTBO "
cymecTByeT Takas okpecTHOCTb U D A, uro A = U;»of"U. K xopomo n3BecTHBIM
oTHOCATC runepbosmueckuii arrpakrop [lnbikuna. 'unepbonnyecknit arrpakrop Il
KIHa, pacliojiaraeTcs na jisyxmepnoit obaacru T = S?, rie S? — eunnanas oKpy»KHOCTb.
Torma f : T — T, f(z,y,z) = (cospsing@,sinpsin @, cos ¢), rae 3nadenne k > 2, u
npeJcTaBIdger coboit mommuokectso T C R3.
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B Hacrosiiee Bpems,K TUIIEPOOJINIECKUM aTTpakTopaM tulia [Libikuna [1] nposisien
OOJIBITION UHTEPEC, ITPU MOJICJIMPOBAHUN CEPJICIHON apUTMUN U aTMOCHEPHBIX TTPOIECCOB.
Arrpakrop IlnbikuHa mpecTaBieH caeayoomeil CHcTeMol ypaBHEHUI:

(X = —2eY2Q (cos(ws coswit) — X sin(ws cos wit))+
kY Qs (cos(wy sinwit) — X sin(ws sinwst)) sin wit,
Y = 2Y (X cos(ws coswit) + 271 (1 — X2 + Y?) sin(w; cos wit))—
kQo (X cos(wa sinwyt) + 2711 — X2 + Y?) sin(ws sinw; t)) sinwit + D(K, 1),
0 = (2X cos(wy coswit) + (1 — X? — Y?) sin(wyp coswit)) (1 + X2 + Y?) 72,
| Qy = (—2X sin(wy sinwit) + (1 — X2 — Y2) cos(wy sinw; 1)) (1 + X2 +Y2)~t 42712,

B macrosimeit pabore mokaszaHo, 9TO IOCPEJICTBOM 0OPaTHOM ¢BsA3M Y U BpeMeHHOI
sagepku 7 Buna D(K, 1) — K(Y(t — 7) — Y(t)) MOXKXHO BBIBOJUTE JAHHYIO CHCTEMY HA
PEryIdapHBIA, XaOTUYECKUNA U IUKJINICCKUAN PEXKUM.

Jannwrit metos, [Iuparaca MoxkeT OBITH MUCIIOIB30BaH B YIPABJICHUH W JIJIS JIPYTHX
THUIIOB XaOTUYECKUX JMHAMUKIX MOJIEJIUIT aTTpakTopos (2.

JIureparypa.
1. Kuznetsov S.P. Phys. Rev. Lett. 95 (2005) 144101.
2. Kuznetsov S.P., Pikovsky A. Physica D 232 (2007) 87.

AHaan3 cToXacTUIeCcKoil ANHaMUKN B 2D-jorucrnueckom OTO6pa}KeHI/II/I
Exarepunuyk E./l., Pamiko JI.B.

Vpaavcrkuti gedepanvroviti ynusepcumem
umenu nepsoeo Ilpesudenma Poccuu B.H.Eavuyuna
Ek. Ekaterinchuk@urfu.ru, Lev. Ryashko@Qurfu.ru

Jlannast paboTta MocBsIleHa NCCaeJ0BAaHUIO JIBY MEPHOI'O JIOTUCTUYECKOT'0 OTOOpayKeHus
[1] B mpucyTcTBUM BHENTHUX CJIy9afHBIX BO3MYIICHI

Ty = (1= Nz + 4 ye(1 — y) + €&

Yot = (1= Nye + Az, (1 — 2,) + emy, (8)
e &,n; — He3aBHCHMbIE TayCCOBCKHUE CJIyYaliHble BEJIMYUHBI ¢ TapamMerpamu E& =
0, Eny = 0, E& = 1,Ep? = 1, a Besimuuna £ XapaKTepusyeT MHTEHCUBHOCTD
BO3MYIIICHU.

B nerepMmuHmpoBaHHOI MOJI€/IM CYIIECTBYET Y€ThIPE PABHOBECHSHA, JIBA U3 KOTOPBHIX
st 0 < A < 0.4 aBJISIIOTCSA yCTONYIMBBIME, JiBa JPYTUX - BCEr/Ia HEYCTONYMBLIE (Celia).
[Ipu A = 0.4 npoucxoaur 6udyprarus Heiimapka-Cakepa 1 poxK1ai0Tcs JIBe COCYIIECT-
BYIOIIIE 3aMKHYTbhIe NHBAPUAHTHBIE KpUBbIe. [[J1s mccire/loBanns JUHAMUKA U3MEHEHUST
a30BbBIX MOPTPETOB JETEPMUHUPOBAHHON MOJIE/IM B 3aBUCUMOCTH OT IIapaMeTpa IOCTPOeHa
oudypkarmonnas quarpamma. Ha 6udypkarnuunoii juarpamMmme MOXKHO OTMETUTH 00JIACTH
C peryJgpHoil IMHAMUKO, BKJIIOYAIOIIEH pa3HooOpa3Hble aTTPAKTOPBI U 30HbI, COJIEPKAIIIe
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Xa0TUIECKIe PeKUMbI. B maHHoii paboTe nCC/1eI0BanCh 30HbI PABHOBECHIT, 3aMKHYTHIX
MHBAPUAHTHBIX KPUBBIX U JUCKPETHBIX 7-IUKJIOB. VI3MeHeHme CTeneHu yCTONIMBOCTH
ATTPAKTOPOB WJLTIOCTPUPYIOT oKazaTesu JIsamynosa. B 30He cymecTBoBanmMs 3aMKHY TOM
WHBapPUAHTHOU KPUBOIl MCCIIEJIOBAHBI YHCJIO BPAIIEHUS W CEKTOPHAS IJIOTHOCTb.

[lon BiMsHMEM TIIyMa CTOXaCTUYECKas TPAEKTOPHS MOKHMIAET JeTePMUHUPOBAHHBIN
aTTPAKTOP U 00pa3yeT BOKPYT HEr0 0OJIAKO CJIyIallHbIX COCTOSHINA. AHAJII3 paCcIIpe/Ie/IeHUsT
CIIy9IafiHbIX COCTOSTHUI OMMMPAECTCS HA TEOPUIO (PYHKIINU CTOXACTUIECKON 1yBCTBUTEIHHOCTH
[2]. [lerasbHo mccaeoBana cTOXaCTHIECKAS 1yBCTBUTEIHLHOCTD ATTPAKTOPOB MOJIEIN 1
KOH(UTYpaIus JJoBepuTe/IbHbIX obtacTeii. VccesremoBanbl KOAhOUIMEHTHI 1Y BCTBUTEILHOCTH
ATTPAKTOPOB B 3aBUCUMOCTH OT IapamMerpa. llapaMerpudeckn mcciieIoBaHbl HHTYIIHPO-
BaHHBIE IITyMOM IEPEXOJIbl OT MOPAJIKA K XAOCY.

[1] Gardini L., Abraham R., Record R.J., Fournier-Prunaret D. A double logistic
map. // International Journal of Bifurcation and Chaos. 1994, Vol. 4, No. 1, 145-176.

[2] Bamkupresa 1. A., Pamko JI.B., Ilserkos 1. H. Croxacrudeckast 4yBCTBUTETHHOCTh
paBHOBeCHUIT ¥ IIUKJIOB INCKPETHBIX HEJIMHEHHBIX IMHAMUIECKUX CHCTEM. |/ /DJIeKTPOHHBII
xxypuas "Jludbdepennuanpabie ypaBHenus u mnporecchl yipasienus". 2009, No. 4.

SEMILINEAR PARABOLIC EQUATIONS
WITHOUT INERTIAL MANIFOLD

A.V. Romanov

National Research University Higher School of Economics
e-mail: av.romanov@hse.ru

Uneprmanbuoe muoroobpasue (M) mosymuneiiHOro napaboimdeckoro ypaBHEHUs
(ITITY) sTo rmajKast KOHETHOMEPHAsT MHBAPUAHTHAS [TOBEPXHOCTD B (DA30BOM IIPOCTPAHCTBE,
coJiepzKaIias r100aJbHbBIN ATTPAKTOP U SKCIIOHEHITNAIBHO TPUTATUBAIONIAs BCe TPAECKTOPHUN
npu 6osbimom Bpemenn. Cyxkenne ypapaenuns wa VM mpejcrasisier coboit O/1Y, onu-
chIBaroIee (pUHAIBHYIO JIMHAMUKY CHCTEMbI. YCTAHOBUTH cyinecTBoBanue VM ymaércs
g y3koro kjacca IIIIY, Torjia Kak m3BecTHbIE TPUMEPBHI €I0 OTCYTCTBUS BBITJISAIAT
HNCKYCCTBEHHO W HE CBSI3aHBI C 33/Ila9aMU MaTeMaTHIeCKOH (PU3UKU.

AbctrpaxTtroe [IITV B BermecTBeHHOM cemapabesbHOM OECKOHETHOMEPHOM THIEOEPTOBOM
npoctpanctee (X, || - ||) umeer Bus

Ou = —Au+ F(u) (1)

C JINHEHBIM TIOJIOZKUTETLHO-ONPEIEISHHBIM orepaTopoM A, kommakTabiM A™1 u riakoit
wesmueitnoit dbynkuueit F @ H — X, tne H = D(A%), 0 < a < 1, ||u||lg = [|[A%].
Cunraem, uro (1) mopoxpaer riajkuil juccunaTuBHbli nosynorok B H. Ilpumeps
orcyrcrBust UM y IIIIY crpositres [1-3] Ha caemyromeit ocHoBe. [liist crarmonapHbIx
touek u € E C H cuexrp o(7T(u)) omeparopa T(u) = F'(u) — A B X cocrour u3
KOHEYHOKDATHBIX COOCTBEHHBIX 3HAYEHUN A U YHCII0 (¢ KPATHOCTBIO) () TOJIOXKUTETbHBIX
A B o(T(u)) xoreuno. Ilycre E_ = {u € E : o(T(u)) N (—o0,0] = ¢}.

JIEMMA. Ecau ammpaxmop ypaerenus (1) ¢ neaunetnocmeo F € CH(H, X) codep-
orcumes 6 uneapuanmmom Konewromeprom Cr-mmnoeoobpasuu M C H, mo dasn ao0vix
ug, u1 € E_ wucao l(ug) — l(uy) wémmno.
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PaCCMOTpI/IM I/IHTeI‘pO—,ZLI/I(b(bepeHHI/IaJIbHOG YpaBHEHUE

Ha ejuHuuHOl okpyxuoctu I' ¢ X = L?(T). 3uech [ =id, z € T,

(Bh)(z) = 1 /7r In | sin =

™

—T

+y‘ h(y) dy

g h € X, onpenenénnas na I' x R? dyukuua f(x,s,p) — 6eckoHedHo riajkas, HO He
anasjuTnyaeckas. Omneparop [+ B urpaer poJib HeJIOKaIbHOTO KO3 dunnenta auddy3nmn.
ITonoxkum Au = U — Ugy.

TEOPEMA ([1]). IIpu nodzxodswem ewbope dpynryuu f ypasuenue (2) nopoosicdaem
duccunamusnoii Ct-noaynomor 6 H = D(A®), a € (3/4,1), npuuém ezo ammparxmop 1e
COOEPAHCUMCA HU 6 KAKOM UHBAPUAHMHom Konewnomeprom Ct-mmozoobpasuu M C H.

dakTuaeckn, crpources GyHKIUs f Takas, 9TO ypaBHeHHe (2) MMeeT CTaluoHAPHBIE
pertennst ug, u; € E_ ¢ l(ug) =0 u l(ug) = 1.

s ypasnernut pearxyuu-duddysuu ussecrusl [2,4] mpumepst orcyrersusa UM ¢ ye-
goBusiMu rutiepbosmanocru. Ilycrs nasa w € E upsivas Red = v sexur B o(7'(u)) u
H (u,~y) — mEBapuanTHOE HOAIPOCTPaHCTBO oneparopa 1'(u), orsedatomee dactu o (1 (u))
¢ Re\ > ~. Nneprmasibaoe MEOr0OOpasue pa3sMepHOCTH 1 HOPMaJIbHO TUliepboinaHo (Ha
E), ecm dim H(u,y) =nVu € Eu~vy = ~(u) < 0. [oap3ysick pesynbratamu 2|, MOXKHO
MIOCTPOUTH JTUCCUTIATUBHYIO cuctemy Y P/l

Owuy = Auy + fi(ur,uz), O = Aug + foluy, ug)

B Ky6e I ¢ yciosuem Hefimana Ha rpanuIie u nmoJMHOMUAJILHON HemHeHOCTBIO (f1, fo),

He JIOIYCKAIOILY 0 HopMaJibHO rutiepbommaeckoro UM B C'(I3; R?). TIpu aToM, 10 cpaBHEHUIO
C AHAJIOTMYIHOTO TUTIA KJIACCUYECKMM KOHTPIPUMEPOM [4| pasMepHoCTh 3a/1auu HOHUKAETCS
C 9eTBHIPEX JI0 TPEX W HeJIMHeifHasd JacTh He 3aBHCHT OT T € 3.
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About Boltzmann’s entropy, Sanov’s entropy and their relations
Baymurzina D. R., Gasnikov A. V.

Moscow Institute of Physics and Technology, Russia

dilyara.rimovna@gmail.com, avgasnikov@gmail.com

Assume that some macrosystem can stay at different states characterized by the
vector 7 with nonegative integer components (filling numbers). Let us assume that in

this system the following reactions may occur:

-

i—si—a+f, @p) e
Following Leontovich (1934), let us introduce intensity of the reaction:
Aoa(@) =Aem(@oi—a+B) =N T KI#/N) T1 ni-...-(n—a;+ 1),

where Kg(ﬁ/N ) > 0 is a constant of reaction. Note that in applications it is always

assumed that
> n(t) = N (N is often called the scalling parameter).

Thus )\(&ﬁ) (1) is a probability of the reaction 7 — 7 — & + ,5 to take place in the
unit of time. On the macrolevel this corresponds to the law of mass action (Guldberg-
Vaage (1864)).

In this work we assume that number of states m = dim 7, number |J| and constants
Kg(ﬁ/N) of reactions may depend on N (in contrast to [1]). Even so we additionally
assume that m < N that is necessary to support application of the Stirling formula upon
obtaining variational principle (maximum of entropy). Let us proceed to the theorem
which bridges Boltzmann’s entropy (Lyapunov’s function of scaled kinetic dynamic) and

Sanov’s entropy (Sanov’s type function in a high probability deviations inequality).

Theorem 1 Let there exists such a function H(C) that invariant (stationary) measure

of described above Markov dynamic fulfills the following representation (in C?):

w(it) = exp(—N - (H(7i/N) 4+ o(1))), N — oc.
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Then H(¢) is Lyapunov’s function for the following ODE system of Guldberg-Vaage:

References
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Feynman and Quasi-Feynman formulae

for higher order Schrodinger equation
Maksim Buzinov

Lomonosov Moscow State University

maxim. cad@gmail.com

One parameter semigroup approximations [1] related to the higher order Schrodinger
0

equation S (t,x) = —a(—AY)N(t, ) with complex coefficient a are considered. For
N = 2 such approximations were obtained in [2]. Similar results for N > 2 are presented
in this talk.

Feynman formulae (i.e. considered semigroup is represented by limits of iterated
integrals of elementary functions when multiplicity of integrals tends to infinity) obtained
for N > 2 are shown in the first part of the talk. Feynman formulae are deduced for
real positive coefficient a (heat-type equation). Different types of Feynman formulas
are presented in this work: Lagrangin and Hamiltonian. Lagrangian Feynman formulae
are suitable for computer modeling of the considered dynamics. Hamiltonian Feynman
formulae are related to some phase space Feynman path integrals; such integrals are
important objects in quantum physics. The main part of these formulae is proved with
the help of the Chernoff theorem; some formulae are obtained on the base of the losida

approximations. Feynman formulae definition was introduced by O.G. Smolyanov [3].

See also overviews [4-6].
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The Remizov theorem [7-8] is used in the second part of the talk to prove Quasi-
Feynman formulae for complex coefficients case in the equation. Quasi-Feynman for-
mula is a representation of a function in a form which includes multiple integrals of
an infinitely increasing multiplicity. The difference from a Feynman formula is that
in a quasi-Feynman formula summation and other functions/operations may be used
while in a Feynman formula only the limit of a multiple integral where the multiplicity
tends to infinity is allowed. The definition of the Quasi-Feynman formula was pre-
sented by [.D. Remizov, and the words «Quasi-Feynman formula» was suggested by
0O.G. Smolyanov.
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Reduced ODE systems governing coarsening dynamics of dewetting liquid films
Kitavtsev G.

Maz Planck Institute for Mathematics in the Sciences, Leipzig, Germany
kitavtsg@mathematik. hu-berlin.de

In this talk an overview of certain classes of high-order degenerate parabolic PDEs
describing dewetting process in thin liquid films and demonstrating long time coarsening
of special localized metastable solutions is presented. As a part the reduction of the
dynamics governed by thin film type equations onto an 'approximate’ finite-dimensional
invariant manifold is derived following the approach in [1]. This corresponds physically to
the late phase evolution of thin liquid films dewetting on a solid substrate, where arrays
of drops connected by an ultrathin film of thickness ¢ undergo a slow-time coarsening
dynamics. Respectively, our asymptotic approximation of the corresponding invariant
manifold in the limit ¢ — 0 is parametrized by a family of droplet pressures and positions.

Subsequently, reduced systems of ODEs for the dynamics on the manifold are derived
for different slip regimes considered at the solid substrate. Subsequently, dependence of
the coarsening rates (i.e. the law describing how fast the number of drops decreases
in time) on the physical parameters is analyzed. In the limiting case of free suspended
films existence of a threshold for the decay of initial distributions of droplet distances at

infinity at which the coarsening rates switch from algebraic to exponential ones is shown.
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Fractals and path integralsin three-dimensional wave equation
A. A. Potapovt, A. E. Rassadin?

1Kotel’nikov Institute of Radio Engineering and Electronics of RAS; <potapov@cplire.ru>
2Nizhny Novgorod division of A. S. Popov’s STSREC; <brat_ras@list.ru>

Let us consider three-dimensional wave equation for function u(X,t):

d%u
? = a2 . AU ’ (l)
where a is phase velocity and A is Laplacian. This equation describes a lot of different physical
phenomena.
It’s easy to see that one can represent equation (1) as a system:
%:—a“\'—A'Y2 a)a/tzza'\'_A‘Yr )

In this system y , (X,t) = u(X,t) and fractional operator +—A is Hermitian operator which
may be called by analogy with quantum mechanics by ‘absolute value of momentum operator’.
This operator possesses by inverse operator (—A) ™2 acting on arbitrary function f (X) as
follows:

2 e o 1 f(x")-d°x’
~A) V2 (%) = : :
M0 = [

It means in particular that function y , (X,t) can be expressed from the first equation of

u(x,1)
-
s, {i 0'] @

system (2) via :
ystem (2) o
one can rewrite system (2) as equation for two-dimensional vectory = ..y ,)":

(3)

Using Pauli matrix

.oy
i-—=a-V-A-S Yy . 5
P vy (5)

Due to identity s 3 =1 it’s possible to find that this Schrddinger type equation has the next
unitary operator of evolution:
exp(-i-t-a-v-A-s )= Y.exp(i-t-a-+/—A)+ Y.exp(-i-t-a-v—A),  (6)

therefore vector y (X,t) can be expressed via it’s initial state y (X,0):

1-s 1+s
2 2

y (%,t) = [T(%, X5y (€,0)-d°X, (7)
where Green’s matrix for equation (5) is equal to:
- 1-s . 1+s o
[(X,Xt) = , L.G* (X', X;t)+ , L.G(X,X":1). (8)

It’s easy to check that Green’s function is:
. i 0 1
G(X, X it)=<X|exp(-i-t-a-v=A)| X' >= c— .
( ) |exp( )l 2.p%-a ot (x-xX)-(a-t)>+i-0
On the other side Green’s function (9) can be expressed by Feynman integral:

(9)
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Q(t)=x
I dP(t)-dQft
GRX= | expli- j(P(t) Q) -a|PE)D-dt]- H% (10
Q(0)=x’
In order to calculate path lntegral (10) one ought to divide interval of time [0,t] on N

equal parts and to approximate coordinates Q(t ) and momenta P(t ) by:
Qt)=Q; +(Qj1—Q))-tt -t ;)/At, Pt)=P;, teltt;,l (11)
where t ; = j-At , At =t/N, j= 0,N . In means in particular that coordinates may walk on

fractal trees in R®. Furthermore dynamics of momenta proves to obey to succession map
P,..=F(P;).Ifmap F:R® — R® satisfies to conditions of Williams-Hatchinson theorem [1]

then momenta also form fractal set in R*®. On the other hand in such map also may take place
chaotic behaviour for instance for generalized Henon map [2].

Thus representation of Green’s function (9) by path integral (10) gives us the possibility to
introduce quantum quasiparticle related with input equation (1) as object moving along fractal

trajectories in six-dimensional phase space (P,Q) . In honour of outstanding physicist of the 20"

century Richard Feynman we call this quasiparticle by ‘feynmanon’. But we underline that
initially wave equation (1) is purely classical. And appearance of quantum quasiparticle in our
consideration is direct consequence of nonlocality in system (2).

In conclusion it should be noted that one can quantize massless scalar field u(X,t) with the

help of annihilation ¢(p) and creation ¢ (p) operators [3]:

s A Com oo - P
u(X,t) = |[C(p)-exp(i-p-X—i-a|p|t)+hc] — (12)
.[ /2-a-|p|-(2-p)3/2
where measure corresponds to following Bose canonical commutative relations [3]:
[E(P).€"(PN]=d(Pp-p), [E(P).C(P)]=0, (13)
one can calculate the next operator:
~ ou(x,t)
H=]|: t 14
j{z[&] (- u(x))} (14)
The result equals to
H =[apl¢ (p)-&(p)d°p (15)
and exactly coincides with Hamiltonian of massless scalar field (9) [3]
~ ou(x,t)
H=]|: \% t 16
j{z[&] (u(x))} (16)

acting in Fock space.
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Feynmanonsin the Korteweg-de Vries equation

A. A. Potapovt, A. E. Rassadin?
1Kotel’nikov Institute of Radio Engineering and Electronics of RAS; <potapov@cplire.ru>
2Nizhny Novgorod division of A. S. Popov’s STSREC; <brat_ras@list.ru>

It is well known that Cauchy problem for the Korteweg-de Vries (KdV) equation:
6—u—6~u~a—u+@:0 t>0, —oo<X<+4m, Uu(x,0)=u,(x) 1)
ot x o xd ' Lo O
describes a wide range of physical phenomena [1]. In order to find exact solution of the KdV
equation (1) one ought to solve the Gelfand-Levitan-Marchenko (GLM) equation [1]:

K(x,y;t)+B(x+ y;t)+TB(y+ z;1)-K(x,z;t)-dz = 0. 2)

Let us now consider the situation when initial condition u,(x) in (1) is the potential hump.
In this case stationary Schrddinger equation connected with this potential u,(x):

d
dx—zy2+(| —Uo(x))y =0 ©)
has no discrete spectrum. Therefore the kernel B(x,t) of the GLM linear integral equation (1)

can be expressed as [1]:

B(x.t) = [by(p)-exp(i-p-x+8-i-p* 1) @
b 2:p
where b, (p) is reflection coefficient for equation (3).
It is easy to see that kernel (4) obeys to the following linearized KdV equation:
B _ 0°B

=48.22-0, 5
ot ox3 ©)

Thus function (4) is equal to convolution of Fourier transform B(x,0) of reflection
coefficient b, (p) with Green’s function of equation (5):

B(x,t) = j:OG(x—x’;t)'B(x’,O)-dx', (6)

which can be expressed through the well-known Airy function:

1 . X
G(xt) = Al : 7
T [z . m} )
On the other side equation (5) can be rewritten as nonstationary equation of Schrodinger-
like type namely:

. OB -
i-—=HB 8
- (8)
with Hamiltonian H = -8- p* , where p =—i-d/ox is operator of momentum.

It means that quite similarly to Green’s function of Schrdodinger equation for free particle
Green’s function (7) can be represented by the following Feynman integral:
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, 1 Q)=x t
X—X }: | eﬂ{i dP()-0Q() o

1 ' P . |
2331 A{z-%/ﬁ [(Pe)-Qe)+8-P2e))-at |-T]

Q(0)=x’ 0 t 2:p

Due to this expression we take the opportunity to introduce quantum quasiparticle related
with equation (5) as object moving along trajectories in two-dimensional phase space (P,Q) and
to call this quasiparticle by ‘feynmanon’. In report [2] it is shown that in these situations the
large majority of these trajectories are fractal. Furthermore dynamics of momenta proves to obey
to succession map P = f (P) which may possess by chaotic behaviour and may be closely
related with fractional derivatives.

Moreover the kernel of the GLM equation has another Feynman integral because two-
dimensional plane wave in formula (4) equals to [3]:

.- Q(0)=x 0 2 2
eXp(|.k-x): J’ exp{i-fzz:{Pj(t)'Qj(t)w}dt]'dm, (10)

“2P G p/2 j=t
where X = (x,t), k = (p,8- p*) and
2 dP;(t)-dQ; ()
dm= ! ! 11
e, s

is Feynman’s pseudomeasure in four-dimensional phase space (P,Q).

The exact solution of problem (1) can be expressed through the solution K(x, y;t) of the
GLM equation (2) as follows [1]:
oK (X, x;1)

ox

It means that feynmanons penetrate very deep into the KdV equation may be because of
Schradinger equation (3) in starting point of our analysis.

In conclusion it is necessary to underline that one can find from generalized uncertainty
relations [4] that under some assumptions solution of equation (5) obeys to the following
inequality (parameters x, and p, are positive):

+Xo +Po
I| B(x,t) |* dx < cos?| arccos,/l 0(po-xo)—arccosJ I | by (p) |2 ;Jl_p . (13)
p

—Xg —Po

u(x,t)=-2- (12)

where | ,(c) is maximal eigenvalue of integral equation:
+1 . ,
IM f(x)-dx' =1 (c)- f(x) (14)
2 (x=x)
for prolate spheroidal wave functions [4].
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Global well-posedness and attractors
for the hyperbolic Cahn-Hilliard-Oono equation in the whole space

Savostianov A., Zelik S.
Unwversity of Surrey

a.savostianov@surrey.ac.uk, s.zelik@surrey.ac.uk

The talk is devoted to the so called hyperbolic relaxation of Cahn-Hilliard-Oono equa-

tion in R? with sub-quintic non-linearity. Based on Strichartz estimates for Schrodinger
equation the global well-posedness for the original problem is proven that drastically
improves admissible growth of the nonlinearity known before. Furthermore, existence
of the compact global attractor for the corresponding semi-group, its smoothness and
finite fractal dimensionality are established. If time permits similar results related to the

damped wave equation will be discussed. The work is joint with Prof. Sergey Zelik.

A gradient flow approach to a fractional porous medium equation
Segatti A.
Unwersita di Pavia

antonio.seqattiQunipv.it

In this seminar I will describe how the following fractional porous medium equation,
recently introduced and studied by Caffarelli & Vazquez,
O — div(uVo) =0 in R? x (0, +00),
(al —AY¥v=u inR?x (0,+), s€ (0,1), and a >0,

can be interpreted as a gradient flow in the space of probability measures endowed with
the Wasserstein distance.

This is a joint project with S. Lisini (Pavia) and E. Mainini (Genova).
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