• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

HSE Scientists Take Important Step Forward in Development of 6G Communication Technologies

HSE Scientists Take Important Step Forward in Development of 6G Communication Technologies

© iStock

Researchers at HSE MIEM have successfully demonstrated the effective operation of a 6G wireless communication channel at sub-THz frequencies. The device transmits data at 12 Gbps and maintains signal stability by automatically switching when blocked. These metrics comply with international 6G standards. An article published on arXiv, an open-access electronic repository, provides a description of certain elements of the system.

For the first time in Russia, scientists at MIEM HSE have demonstrated the effective operation of a sixth-generation (6G) data transmission system. The experiment confirmed that the system can operate in a laboratory environment while maintaining high data transfer rates and a stable connection. The demonstrator operated at frequencies of 141–148.5 GHz and 151.5–164 GHz, achieving a data transfer rate of 12 Gbps. These metrics comply with international standards for sixth-generation (6G) and IMT-2030 network communication channels, specifically ETSI GR THz 002 V1.1.1 (March 2024) and ITU-R M.2160 of the International Telecommunication Union (ITU).

The system's key feature is real-time signal distribution control. If the signal is blocked, the system automatically switches to a different antenna. This ensures a stable connection, even in adverse conditions. Some of the system's components were developed at MIEM HSE and Moscow Pedagogical State University. These components include, for example, the RIS panel (compliant with ITU-R M.2541-0, May 2024), a frequency-selective surface that controls the direction of signal transmission, and diode detectors that enable operation at sub-terahertz frequencies.

Currently, the system's range is limited by the size of the room, but this can be adjusted by replacing the antennas. This technology can be useful for high-speed communication networks and IoT systems. The scientists plan to use machine learning to enhance signal distribution and improve protection against interference.

'We have demonstrated that the 6G system can reliably transmit data at the required frequencies and speeds. This is a significant step forward in the development of communication technologies. In the future, we will focus on making the system even more resilient by leveraging machine learning. For example, we plan to teach it how to automatically control the signal beam, ensuring stable communication even when users are in motion,' comments Prof. Evgeny Koucheryavy, Director of the MIEM HSE Telecommunications Research Institute.

Telecommunication companies have shown interest in the developed solution. Discussions are already underway regarding the creation of commercial devices that could compete with their foreign counterparts.

See also:

Cerium Glows Yellow: Chemists Discover How to Control Luminescence of Rare Earth Elements

Researchers at HSE University and the Institute of Petrochemical Synthesis of the Russian Academy of Sciences have discovered a way to control both the colour and brightness of the glow emitted by rare earth elements. Their luminescence is generally predictable—for example, cerium typically emits light in the ultraviolet range. However, the scientists have demonstrated that this can be altered. They created a chemical environment in which a cerium ion began to emit a yellow glow. The findings could contribute to the development of new light sources, displays, and lasers. The study has been published in Optical Materials.

Genetic Prediction of Cancer Recurrence: Scientists Verify Reliability of Computer Models

In biomedical research, machine learning algorithms are often used to analyse data—for instance, to predict cancer recurrence. However, it is not always clear whether these algorithms are detecting meaningful patterns or merely fitting random noise in the data. Scientists from HSE University, IBCh RAS, and Moscow State University have developed a test that makes it possible to determine this distinction. It could become an important tool for verifying the reliability of algorithms in medicine and biology. The study has been published on arXiv.

Habits Stem from Childhood: School Years Found to Shape Leisure Preferences in Adulthood

Moving to a big city does not necessarily lead to dramatic changes in daily habits. A study conducted at HSE University found that leisure preferences in adulthood are largely shaped during childhood and are influenced by where individuals spent their school years. This conclusion was drawn by Sergey Korotaev, Research Fellow at the HSE Faculty of Economic Sciences, from analysing the leisure habits of more than 5,000 Russians.

Russian Scientists Reconstruct Dynamics of Brain Neuron Model Using Neural Network

Researchers from HSE University in Nizhny Novgorod have shown that a neural network can reconstruct the dynamics of a brain neuron model using just a single set of measurements, such as recordings of its electrical activity. The developed neural network was trained to reconstruct the system's full dynamics and predict its behaviour under changing conditions. This method enables the investigation of complex biological processes, even when not all necessary measurements are available. The study has been published in Chaos, Solitons & Fractals.

Researchers Uncover Specific Aspects of Story Comprehension in Young Children

For the first time, psycholinguists from the HSE Centre for Language and Brain, in collaboration with colleagues from the USA and Germany, recorded eye movements during a test to assess narrative skills in young children and adults. The researchers found that story comprehension depends on plot structure, and that children aged five to six tend to struggle with questions about protagonists' internal states. The study findings have been published in the Journal of Experimental Child Psychology.

Scientists Propose Novel Theory on Origin of Genetic Code

Alan Herbert, Scientific Supervisor of the HSE International Laboratory of Bioinformatics, has put forward a new explanation for one of biology's enduring mysteries—the origin of the genetic code. According to his publication in Biology Letters, the contemporary genetic code may have originated from self-organising molecular complexes known as ‘tinkers.’ The author presents this novel hypothesis based on an analysis of secondary DNA structures using the AlphaFold 3 neural network.

See, Feel, and Understand: HSE Researchers to Explore Mechanisms of Movement Perception in Autism

Scientists at the HSE Cognitive Health and Intelligence Centre have won a grant from the Russian Science Foundation (RSF) to investigate the mechanisms of visual motion perception in autism. The researchers will design an experimental paradigm to explore the relationship between visual attention and motor skills in individuals with autism spectrum disorders. This will provide insight into the neurocognitive mechanisms underlying social interaction difficulties in autism and help identify strategies for compensating for them.

Scholars Disprove Existence of ‘Crisis of Trust’ in Science

An international team of researchers, including specialists from HSE University, has conducted a large-scale survey in 68 countries on the subject of trust in science. In most countries, people continue to highly value the work of scientists and want to see them take a more active role in public life. The results have been published in Nature Human Behaviour.

Education System Reforms Led to Better University Performance, HSE Researchers Find

A study by researchers at the HSE Faculty of Economic Sciences and the Institute of Education have found that the number of academic papers published by research universities in international journals has tripled in the past eight years. Additionally, universities have developed more distinct specialisations. Thus, sectoral universities specialising in medical, pedagogical, technical, and other fields are twice as likely to admit students to target places. The study has been published in Vocation, Technology & Education.

Scientists Record GRB 221009A, the Brightest Gamma-Ray Burst in Cosmic History

A team of scientists from 17 countries, including physicists from HSE University, analysed early photometric and spectroscopic data of GRB 221009A, the brightest gamma-ray burst ever recorded. The data was obtained at the Sayan Observatory one hour and 15 minutes after the emission was registered. The researchers detected photons with an energy of 18 teraelectronvolts (TeV). Theoretically, such high-energy particles should not reach Earth, but data analysis has confirmed that they can. The results challenge the theory of gamma radiation absorption and may point to unknown physical processes. The study has been published in Astronomy & Astrophysics.