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Abstract. An original classification of random trajectories formed by a Brownian particle whose motion is governed by
stochastic self-acceleration is constructed. In particular, it enables us to elucidate the mechanism endowing the analyzed
continuous Markovian random walks with the characteristic properties of Lévy flights or Lévy walks. Lévy flights appear
in the case when the particle velocity is governed by stochastic self-acceleration, Lévy walks are the case when the particle
acceleration undergoes stochastic self-acceleration whereas the particle velocity is approximately fixed in magnitude. Besides,
the constructed trajectory classification can be regarded as a generalized continuous time random walks model.

DISCRETE AND CONTINUOUS MODELS OF LEVY TYPE PROCESSES

Lévy type stochastic processes are met in many systems of various natures (e.g., Ref. [1, 2]). One of the widely
used approaches to describing such processes is the so-called continuous time random walks (CTRW) [3, 4]. This
model implements, in particular, a general class of Lévy type stochastic processes represented as random motion
x(t) of a wandering particle in the space R" and described by the fractional Fokker-Planck equation [5]. It imitates
random motion of a particle by assigning to each its jump a length dx and a waiting time &7 elapsing between two
successive jumps, drawn from the probability density y(8x, 6¢). When it is possible to write this probability density
as the product of the individual probability densities of the jump length, y,(0x), and the waiting time, y;(07), i.e.,
y(6x,8t) = W, (0x)y;(Ot), the two quantities can be regarded as independent random variables. In this case the model
is called decoupled CTRW. In the opposite case called coupled CTRW the probability density y(dx, 8¢) is represented
usually as the product of two functions y(Jx, 6t) = y,(6x)y, (8x/8t) or y(Sx,6t) = w;(61)y,(6x/5t), so the jump
characteristics 6x and 8¢ are no longer independent random variables but the independent variables are the jump length
Ox (or the waiting time &¢) and the mean particle velocity v = 8x/6t.

In particular, Lévy flights are one of the special types of CTRW. A Lévy flight’s waiting time distribution is narrow,
for instance, Poissonian with y;(8t) = 7~ !exp{—5¢/t}, where 7 is a certain “microscopic” time scale and, thus, the
system dynamics becomes Markovian on time scales ¢ > 7. The jump length distribution of Lévy flights is long-tailed
and the resulting distribution function of the particle displacement x during a time interval > 7, for example, in
one-dimensional case (N = 1) exhibits the asymptotic behavior W(x,7) ~ [x(¢)]%/x!T* for x > x(t), where x(¢) is the
characteristic particle displacement during the time interval ¢ and the exponent & meets the inequality 0 < o < 2. The
time dependence of the value (¢) obeys the scaling law %(r) o< '/, As a result the distinctive feature of Lévy flights
is the divergence of the second moment (x?) — co.

Lévy walks are another characteristic example of these processes and observed widely in animal movements and
human traveling patterns (for a review see Refs. [6] and [7], respectively). In contrast to Lévy flights, Lévy walks
possess a finite mean squared displacement, albeit having a broad jump length distribution. It becomes possible due to
coupling waiting times and jump lengths, W, (67)y, (8x/¢), such that a long jump involves a long waiting time.

The given discrete implementation of CTRW admits a continuous representation of particle motion assuming that
within one jump a wandering particle moves with a fixed velocity v along the straight line connecting its initial and
terminal points. A more detailed description of particle motion lies beyond the CTRW model. Unfortunately, for Lévy
flights sophisticated details of the particle motion within one step could be substantial especially in heterogeneous
media or systems with boundaries. For example, the fact that Lévy flights do exhibit nontrivial properties on scales of
single steps was found in studying the first passage time problem for Lévy flights based on the leapover statistics [8].

Recently, a new approach to modeling Lévy type random motion based on continuous nonlinear Markovian
processes has been proposed [9, 10, 11, 12]. The pivot point of this approach is stochastic differential equations
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FIGURE 1. The characteristic form of the time pattern {1 (7)} generated by model (1). The two frames depict the same patten
on different time scales. Based on the results presented in Ref. [9], the value @ = 1.6 was used.

with nonlinear noise governing the particle motion that generate the desired Lévy type random walks on scales r > 7
exceeding some microscopic time 7. It enables one to cope with continuous trajectories of Brownian motion whose
properties can be analyzed using the standard techniques and then to pass to the limit # > 7. To clarify the basic
features of this approach let us consider a rather simple case when the phase variable 1 € R determining the particle
motion in the space R is governed by the equation

dn _ _1+o \F/i ;
7o R R VAR VA PR xE(1), (1)

where, o is some coefficient coinciding, e.g., for Lévy flights with the exponent o noted above, &(r) is white noise
of unit amplitude, and the parameter 7, quantifies the relative weight of additive and multiplicative components of
the random Langevin force [11]. The multiplication sign ‘x’ in equation (1) indicates that it is written in the Hanggi-
Klimontovich form. The 7n-dependence of the noise intensity g(v) := /2/7 - /N2 + n? growing linearly with 7,
i.e., g(v) =< n for n > n, is the implementation of stochastic self-acceleration, real or effective one. As illustrated
in Fig. 1, stochastic self-acceleration causes a complex multi-scale structure of the time pattern {7 (#)}. Its extreme
n-fluctuations are distributed according to a power-law and their characteristic amplitude grows also according to
a power-low as the observation time interval 7 increases. In particular, the former property gives rise to the Lévy
distribution of the particle displacement, whereas the latter one is responsible for the Lévy time scaling [9, 10].

These features make it attractive to partition the pattern {1(¢)} in such a way that its fragments {n(¢)}:"" could
be classified as random walks inside a certain neighborhood .Z of the origin n = 0 or outside it. Then, the latter
ones may be treated as some peaks in the time pattern {n(z)}. A direct implementation of this idea, however, faces
a serious obstacle. The matter is that a random trajectory is not a smooth curve. Therefore, although for a wandering
particle it is possible to calculate the probability of getting the boundary of . for the first time, the question about
it crossing this boundary for the second time is meaningless, the particle will cross the boundary immediately after
the first one. The trajectory classification to be constructed below enables us to overcome this problem and, thus, to
implement the desired partition. In this way the two approaches, discrete and continuous ones, to modeling Lévy type
random motion become interrelated. The CTRW model admits rather efficient numerical implementation whereas its
basic characteristics can be found appealing to physical properties of the system.

However, before constructing the desired trajectory classification let us present two particular models using this
approach. The first one generates Lévy flights and describes random motion x(z) € R™ of a wandering particle in RY
whose velocity v = dx/dt is governed by an equation similar to Eq. (1), namely, [9, 10, 11]

% = —Nta VA \/z\/v,zl—kvz*é(t), where § = {&,&,....&v} and (&i(1)E; (1)) =8(t—1)8w.  (2)

The second one generates Lévy walks and imitates stochastic search during animal foraging [13]. It appeals to the
concept of a self-propelled particle moving in R? mainly with a velocity of a preferable magnitude vy and the stochastic
variable 11 € R? describes its active behavior in intentional change of the motion direction. In the simplest form this
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FIGURE 2. The characteristic form of the time pattern representing the motion direction of a wandering particle (left frame) and
the corresponding trajectory of its motion (right frame) generated by model (3). Based on the results of Ref. [13].

model reads

dv V2 dn Ay V21 A2 41?2

Here A, and A, are some kinetic coefficients and the value Ang quantifying the relative contribution of the additive
components of the Langevin forces is related to the value 7, characterizing the limit capacity of the animal active
behavior via the proportionality coefficient A < 1. Figure 2 exemplifies the characteristic properties of random walks
generated by model (3). As seen, the motion trajectory does contain a sequence of fragments matching gradual
variations of the motion direction followed by step-wise jumps. These fragments can be approximated by the particle
motion along straight lines whereas the jumps may be treated as turning points in the particle motion.

TRAJECTORY CLASSIFICATION

Figure 3 (left frame) exhibits the desired classification of random walks in R. Let us introduce two boundaries 1;
and 1, for the layer .Z such that n, < 1; < 1n,. Then, without loss of generality, we assume that the first fragment
of a given trajectory represents the motion of the wandering particle outside the interval [0,17);) until it gets the point
n = n; for the first time at a time moment #; > 0. Such particle motion is referred to as random walks outside the
neighborhood .Z of the origin 11 = 0. The next fragment matches the particle wandering inside the interval [0,1,)
until it gets the point 1), for the first time at a certain moment #, > ¢;. The particle motion of this type is referred to as
random walks inside the neighborhood .. The following fragment is similar to the first one and so on. A sequence
of such fragments alternating one another makes up the desired trajectory partition. The collection of quantities {®;}
bounding from above the allowed n-variations in the corresponding fragments of random walks outside .’ enables
us to analyze the statistics of the extreme 1-fluctuations of the pattern {1 (r)}. Exactly this representation of particle
trajectories generalizes the CTRW model because it does not assume the particle to move uniformly withing time steps
composed of two succeeding fragments of random walks inside and outside .Z.

Analyzing the statistics of the constructed trajectory fragments we demonstrate the possibility of converting to a
new variable u and time t via the formula

t 1 1 4r
n) = sinh{u((x) + Ag sign [u(t)]} , where ¢ = 2 tand Ay = aln [()cl"2((o(:/)2)} <035forax€(0,2), (4)
such that the stochastic process () be governed by the equation
du .
2p = s+ V2E(Y) 5)

containing no parameters at all. It is called the core stochastic process. All the system parameters such as the exponent
of the Lévy scaling law enter only the transformation formulas. This, in particular, explains why the main results
rigorously obtained for Lévy flights of the superdiffusive regime [9, 10] hold for the other possible regimes as
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FIGURE 3. The classification diagram of random walks in the space Ry and their basic fragments (left frame). Without loss of
generality, we may consider trajectories returning to the initial point located at the upper boundary of the layer .. The right frame
visualizes the time-space structure of trajectories formed by the random motion u(t) in the vicinity of the attained maximal value.

demonstrated numerically [11]. In addition it is worthwhile to note that in studying the extreme characteristics of
particle motion outside the neighborhood - the shape of the time pattern {7n(¢)} can be approximated using the most
probable trajectory {nop(7) }. It opens a gate to modeling such processes in heterogeneous media constructing the most
optimal trajectories of particle motion in heterogeneous environment. Figure 3 (right frame) justifies this by showing
how the points of trajectories are scatted around {Nop(f)}.

As far as Lévy flights are concerned, for the random walks x(¢) € R described by the relationship dx/dr = 1 it is
demonstrated that the power-law tails in the distribution function Z2(8;x) of the particle spatial displacements during
the time interval ¢ are mainly due to the extreme fluctuations in the particle velocity within individual fragments of
random motion outside the neighborhood .#; all the other details of these random walks are of minor importance. It is
called the one-peak approximation in order to underline the fact that in calculating the asymptotics of the distribution
function £(9,x) it is sufficient to take into account only one fragment containing the extreme value of the particle
velocity. Naturally, the other fragments contribute to the magnitude of this distribution function taken at 6x = 0 and
to describe this effect one has to go beyond the one-peak approximation, which is worthy of individual analysis.
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